Identificarse Registrarse

Psu
Enseñanza Básica
Enseñanza Media
Universidad
Olimpiadas
Comunidad



 
Reply to this topicStart new topic
> Demostrar trascendencia.
juanpamat
mensaje May 15 2019, 08:13 AM
Publicado: #1


Dios Matemático
Ícono de Grupo

Grupo: Usuario FMAT
Mensajes: 373
Registrado: 29-December 08
Desde: santiago
Miembro Nº: 41.467
Nacionalidad:
Colegio/Liceo: Colegio Salesiano Oratorio Don Bosco
Sexo:



Demostrar que el número TEX: $a$=TEX: $\displaystyle \sum 1/2^{n!}$ es trascendente.
-----
Algo de Historia:
1844: Liouville showed that certain numbers, now called Liouville
numbers, are transcendental.
1873: Hermite showed that TEX: $e$ is transcendental.
1874: Cantor showed that the set of algebraic numbers is countable,
but that TEX: $R$ is not countable. Thus most numbers are transcendental
(but it is usually very difficult to prove that any particular number is
transcendental).
1882: Lindemann showed that TEX: $\pi$ is transcendental.
1934: Gel’fond and Schneider independently showed that TEX: $a^b$ is trascendental if TEX: $a,b$ son algebraic with TEX: $a \not=0,1$ and TEX: $b \not \in Q$ (This
was the seventh of Hilbert’s famous problems.)
2004: Euler’s constant has not yet been proven to be transcendental or even irrational.
2004: The numbers TEX: $\pi + e$ and TEX: $e-\pi$ are surely transcendental, but
again they have not even been proved to be irrational

Mensaje modificado por juanpamat el May 15 2019, 08:14 AM


--------------------


* "Las matemáticas son el alfabeto con el cual Dios ha escrito el Universo"
* "Las matemáticas son el lenguaje de la naturaleza."
Galileo Galilei.
Go to the top of the page
 
+Quote Post
hermite
mensaje May 15 2019, 10:16 AM
Publicado: #2


Maestro Matemático
Ícono de Grupo

Grupo: Usuario FMAT
Mensajes: 128
Registrado: 27-November 15
Miembro Nº: 142.558



CITA(juanpamat @ May 15 2019, 08:13 AM) *
Demostrar que el número TEX: $a$=TEX: $\displaystyle \sum 1/2^{n!}$ es trascendente.
-----
Algo de Historia:
1844: Liouville showed that certain numbers, now called Liouville
numbers, are transcendental.
1873: Hermite showed that TEX: $e$ is transcendental.
1874: Cantor showed that the set of algebraic numbers is countable,
but that TEX: $R$ is not countable. Thus most numbers are transcendental
(but it is usually very difficult to prove that any particular number is
transcendental).
1882: Lindemann showed that TEX: $\pi$ is transcendental.
1934: Gel’fond and Schneider independently showed that TEX: $a^b$ is trascendental if TEX: $a,b$ son algebraic with TEX: $a \not=0,1$ and TEX: $b \not \in Q$ (This
was the seventh of Hilbert’s famous problems.)
2004: Euler’s constant has not yet been proven to be transcendental or even irrational.
2004: The numbers TEX: $\pi + e$ and TEX: $e-\pi$ are surely transcendental, but
again they have not even been proved to be irrational

la ultima nota historica no esta correcta. No se sabe si ninguno de esos dos es trascendente, lo que se sabe ( y es trivial de demostrar) es que al menos uno de los dos debe ser trascendente. La ultima parte esta correcta,
Go to the top of the page
 
+Quote Post
Uchiha_Madara
mensaje May 15 2019, 11:43 AM
Publicado: #3


Matemático
Ícono de Grupo

Grupo: Usuario FMAT
Mensajes: 49
Registrado: 26-May 18
Miembro Nº: 157.415
Nacionalidad:
Sexo:



QUOTE(juanpamat @ May 15 2019, 08:13 AM) *
Demostrar que el número TEX: $a$=TEX: $\displaystyle \sum 1/2^{n!}$ es trascendente.
-----
Algo de Historia:
1844: Liouville showed that certain numbers, now called Liouville
numbers, are transcendental.
1873: Hermite showed that TEX: $e$ is transcendental.
1874: Cantor showed that the set of algebraic numbers is countable,
but that TEX: $R$ is not countable. Thus most numbers are transcendental
(but it is usually very difficult to prove that any particular number is
transcendental).
1882: Lindemann showed that TEX: $\pi$ is transcendental.
1934: Gel’fond and Schneider independently showed that TEX: $a^b$ is trascendental if TEX: $a,b$ son algebraic with TEX: $a \not=0,1$ and TEX: $b \not \in Q$ (This
was the seventh of Hilbert’s famous problems.)
2004: Euler’s constant has not yet been proven to be transcendental or even irrational.
2004: The numbers TEX: $\pi + e$ and TEX: $e-\pi$ are surely transcendental, but
again they have not even been proved to be irrational

Esto es numero de lioville.


--------------------
Estudiante de Ingeniería
Go to the top of the page
 
+Quote Post

Reply to this topicStart new topic
1 usuario(s) está(n) leyendo esta discusión (1 invitado(s) y 0 usuario(s) anónimo(s))
0 miembro(s):

 

Versión Lo-Fi Fecha y Hora actual: 23rd November 2024 - 04:58 PM