Identificarse Registrarse

Psu
Enseñanza Básica
Enseñanza Media
Universidad
Olimpiadas
Comunidad



11 Páginas: V  < 1 2 3 4 5 > »   
Reply to this topicStart new topic
> Tarea forma A, (pares)
nagly
mensaje Feb 10 2012, 08:39 PM
Publicado: #21


Matemático
Ícono de Grupo

Grupo: Usuario FMAT
Mensajes: 36
Registrado: 19-June 09
Miembro Nº: 54.205
Nacionalidad:
Universidad: Universidad Santa Maria
Sexo:



CITA(user3 @ Feb 10 2012, 06:59 PM) *
TEX: $$\text{Para el compañero que subió sus desarrollos:}$$
TEX: $$\text{Estaba viendo la 8b, y me parece que el periodo de la función g(x) es }2\pi$$
TEX: $$\text{entonces, según yo: }$$
TEX: $$g\left( x \right) =\frac { { a }_{ 0 } }{ 2 } +\sum _{ k=1 }^{ \infty  }{ { a }_{ k }\cos { \left( kx \right)  }  } $$

TEX: $${ a }_{ 0 }=\frac { 1 }{ \pi  } \int _{ -p }^{ p }{ g\left( x \right)  } dx$$
­
TEX: $${ a }_{ k }=\frac { 1 }{ \pi  } \int _{ -p }^{ p }{ g\left( x \right) cos{ \left( kx \right)  } } dx$$
y... qué es eso de la doble abertura?????


Compadre, lo que asumí fue que como nos dice que -p<x<p (menor o igual), la función tiene período 2p; y hay que tener cuidado porque hay 2 tipos de fórmulas para las Series de Fourier, entonces hay que tomar una y que esa sea la misma para todos los ejercicios, por ejemplo la tuya tiene el A0/2 (en el g(x)) en cambio la que yo uso no; ya que se incluye ese 1/2 en el momento de obtener el A0. Ojalá se entienda =S .
Pero hiciste el ejercicio para ver que resultado te da?? De todas maneras voy a revisarlo y te voy a subir en unas fotos las fórmulas que uso para que se entienda mejor ok?

Mensaje modificado por nagly el Feb 10 2012, 08:51 PM
Archivo(s) Adjunto(s)
Archivo Adjunto  Serie_de_Fourier.jpg ( 71.11k ) Número de descargas:  19
 
Go to the top of the page
 
+Quote Post
nagly
mensaje Feb 10 2012, 08:55 PM
Publicado: #22


Matemático
Ícono de Grupo

Grupo: Usuario FMAT
Mensajes: 36
Registrado: 19-June 09
Miembro Nº: 54.205
Nacionalidad:
Universidad: Universidad Santa Maria
Sexo:



CITA(nagly @ Feb 10 2012, 09:39 PM) *
Compadre, lo que asumí fue que como nos dice que -p<x<p (menor o igual), la función tiene período 2p; y hay que tener cuidado porque hay 2 tipos de fórmulas para las Series de Fourier, entonces hay que tomar una y que esa sea la misma para todos los ejercicios, por ejemplo la tuya tiene el A0/2 (en el g(x)) en cambio la que yo uso no; ya que se incluye ese 1/2 en el momento de obtener el A0. Ojalá se entienda =S .
Pero hiciste el ejercicio para ver que resultado te da?? De todas maneras voy a revisarlo y te voy a subir en unas fotos las fórmulas que uso para que se entienda mejor ok?


Me di cuenta que tengo el Ao malo... pero me faltó dividirlo por 2 nada mas

Mensaje modificado por nagly el Feb 10 2012, 09:01 PM
Go to the top of the page
 
+Quote Post
Benjazz
mensaje Feb 11 2012, 04:36 PM
Publicado: #23


Principiante Matemático
Ícono de Grupo

Grupo: Usuario FMAT
Mensajes: 6
Registrado: 17-June 10
Miembro Nº: 72.709
Nacionalidad:
Colegio/Liceo: Colegio Pumahue
Universidad: Universidad Santa Maria-Departamento de Industrias
Sexo:



Una duda, en el 8, punto 2. Como dice que el intervalo va de -p a p, y que el periodo es 2 Pi, no significa que p= pi ???
Go to the top of the page
 
+Quote Post
ivan_xd
mensaje Feb 11 2012, 05:10 PM
Publicado: #24


Doctor en Matemáticas
Ícono de Grupo

Grupo: Team Ensayos FMAT
Mensajes: 187
Registrado: 12-September 09
Desde: Valparaíso
Miembro Nº: 58.691
Nacionalidad:
Colegio/Liceo: Colegio Presbiteriano David Trumbull - Valparaiso
Universidad: Universidad Santa Maria-Departamento de Obras Civiles
Sexo:



TEX: $$\text{Para los que estén colgados con la demostración de la primera serie en la 8, aquí va una pista: }$$

TEX: $$\text{Considerar la función  }h\left( x \right) =-\left| x \right| +\pi \text{ con periodo } 2\pi$$
TEX: $$\text{y calculan su Serie de Fourier:}$$
TEX: $${ a }_{ 0 }+\sum _{ k=1 }^{ \infty  }{ \left( { a }_{ k }\cos { \left( kx \right)  } +{ b }_{ k }\sin { \left( kx \right)  }  \right)  } $$

TEX: $$\text{Y aplican la identidad de Parseval: }$$
TEX: $$2{ { a }_{ 0 } }^{ 2 }+\sum _{ k=1 }^{ \infty  }{ \left( { { a }_{ k } }^{ 2 }+{ { b }_{ k } }^{ 2 } \right)  } =\frac { 1 }{ \pi  } \int _{ -\pi  }^{ \pi  }{ h^{ 2 }\left( x \right)  } dx$$

Mensaje modificado por ivan_xd el Feb 11 2012, 05:15 PM


--------------------




Ingeniería Civil 2010 - Casa Central
Go to the top of the page
 
+Quote Post
ivan_xd
mensaje Feb 11 2012, 05:23 PM
Publicado: #25


Doctor en Matemáticas
Ícono de Grupo

Grupo: Team Ensayos FMAT
Mensajes: 187
Registrado: 12-September 09
Desde: Valparaíso
Miembro Nº: 58.691
Nacionalidad:
Colegio/Liceo: Colegio Presbiteriano David Trumbull - Valparaiso
Universidad: Universidad Santa Maria-Departamento de Obras Civiles
Sexo:



CITA(Benjazz @ Feb 11 2012, 05:36 PM) *
Una duda, en el 8, punto 2. Como dice que el intervalo va de -p a p, y que el periodo es 2 Pi, no significa que p= pi ???


TEX: $$\text{Yo tomé dos casos: } \left| p \right| \le \pi  \text{ y } \left| p \right| >\pi $$
TEX: $$\text{Siempre con periodo }2\pi \text{. En el primer caso se integra de -p a p}$$
TEX: $$\text{ y en el segundo de }-\pi \text{ a } \pi$$

Mensaje modificado por ivan_xd el Feb 11 2012, 05:25 PM


--------------------




Ingeniería Civil 2010 - Casa Central
Go to the top of the page
 
+Quote Post
nagly
mensaje Feb 11 2012, 08:39 PM
Publicado: #26


Matemático
Ícono de Grupo

Grupo: Usuario FMAT
Mensajes: 36
Registrado: 19-June 09
Miembro Nº: 54.205
Nacionalidad:
Universidad: Universidad Santa Maria
Sexo:



CITA(ivan_xd @ Feb 11 2012, 06:23 PM) *
TEX: $$\text{Yo tomé dos casos: } \left| p \right| \le \pi  \text{ y } \left| p \right| >\pi $$
TEX: $$\text{Siempre con periodo }2\pi \text{. En el primer caso se integra de -p a p}$$
TEX: $$\text{ y en el segundo de }-\pi \text{ a } \pi$$



Mañana voy a ver que onda con esto wink.gif
Go to the top of the page
 
+Quote Post
SebaUC
mensaje Feb 12 2012, 10:26 AM
Publicado: #27


Principiante Matemático Destacado
Ícono de Grupo

Grupo: Usuario FMAT
Mensajes: 17
Registrado: 7-June 10
Desde: Your mum's house
Miembro Nº: 72.135
Nacionalidad:
Universidad: Universidad Santa Maria
Sexo:



Alguien sabe a que se refiere con "Hallar la linea de campo que contiene al punto (3,5)" Es como reemplazar y ver el vector que me queda ?????. Aguna idea para la parametrizacion para que dé C(0) = (3,5)?

Alguien que haya hecho la 5 que me quedá la cagá con el teorema de si es conservativo o no. Onda el rotor es 0 pero la integral de linea en la circunferencia (4) es -2pi tncs no cumple conque tiene que ser 0. Pero muchos libros dicen que basta con mostrar que es irrotacional para decir que es conservativo.

Asimismo alguna idea de como hacer la 6 de ese mismo problema (problema 5) ya que a mi se me ocurre y solo por simple vista .. que algo tiene que ver que no es conservativo cuando se puede hacer una circunferencia alrededor del punto problema, porque para cada dominio que nos dan en la 6.- no se puede hacer esa circunferencia que haria luego que la integral de linea sea distinta de 0.

Diferencia entre Arcoconexo y conexo ?

Vamos que se puede che!

zippyyeahbt5.gif

Mensaje modificado por SebaUC el Feb 12 2012, 10:45 AM
Go to the top of the page
 
+Quote Post
ivan_xd
mensaje Feb 12 2012, 03:07 PM
Publicado: #28


Doctor en Matemáticas
Ícono de Grupo

Grupo: Team Ensayos FMAT
Mensajes: 187
Registrado: 12-September 09
Desde: Valparaíso
Miembro Nº: 58.691
Nacionalidad:
Colegio/Liceo: Colegio Presbiteriano David Trumbull - Valparaiso
Universidad: Universidad Santa Maria-Departamento de Obras Civiles
Sexo:



CITA(SebaUC @ Feb 12 2012, 11:26 AM) *
Alguien sabe a que se refiere con "Hallar la linea de campo que contiene al punto (3,5)" Es como reemplazar y ver el vector que me queda ?????. Aguna idea para la parametrizacion para que dé C(0) = (3,5)?


Ahí hay que resolver un sistema de EDOs, mira:
TEX: $$\text{Si }\sigma \left( t \right) =\left( x\left( t \right) ,y\left( t \right)  \right) \text{ es una línea de campo de }\vec { F }  \text{, entonces }\sigma '\left( t \right) =\vec { F } $$


--------------------




Ingeniería Civil 2010 - Casa Central
Go to the top of the page
 
+Quote Post
nagly
mensaje Feb 13 2012, 12:04 PM
Publicado: #29


Matemático
Ícono de Grupo

Grupo: Usuario FMAT
Mensajes: 36
Registrado: 19-June 09
Miembro Nº: 54.205
Nacionalidad:
Universidad: Universidad Santa Maria
Sexo:



CITA(ivan_xd @ Feb 11 2012, 06:10 PM) *
TEX: $$\text{Para los que estén colgados con la demostración de la primera serie en la 8, aquí va una pista: }$$

TEX: $$\text{Considerar la función  }h\left( x \right) =-\left| x \right| +\pi \text{ con periodo } 2\pi$$
TEX: $$\text{y calculan su Serie de Fourier:}$$
TEX: $${ a }_{ 0 }+\sum _{ k=1 }^{ \infty  }{ \left( { a }_{ k }\cos { \left( kx \right)  } +{ b }_{ k }\sin { \left( kx \right)  }  \right)  } $$

TEX: $$\text{Y aplican la identidad de Parseval: }$$
TEX: $$2{ { a }_{ 0 } }^{ 2 }+\sum _{ k=1 }^{ \infty  }{ \left( { { a }_{ k } }^{ 2 }+{ { b }_{ k } }^{ 2 } \right)  } =\frac { 1 }{ \pi  } \int _{ -\pi  }^{ \pi  }{ h^{ 2 }\left( x \right)  } dx$$



Compadre, no cacho por que hay que considerar esa función??? de dónde se te ocurre eso viendo el ejercicio?? porque según lo que entiendo tenemos que usar las funciones f(x) o g(x) para demostrar o refutar....
gracias, saludos.
Go to the top of the page
 
+Quote Post
ivan_xd
mensaje Feb 13 2012, 12:17 PM
Publicado: #30


Doctor en Matemáticas
Ícono de Grupo

Grupo: Team Ensayos FMAT
Mensajes: 187
Registrado: 12-September 09
Desde: Valparaíso
Miembro Nº: 58.691
Nacionalidad:
Colegio/Liceo: Colegio Presbiteriano David Trumbull - Valparaiso
Universidad: Universidad Santa Maria-Departamento de Obras Civiles
Sexo:



CITA(nagly @ Feb 13 2012, 01:04 PM) *
Compadre, no cacho por que hay que considerar esa función??? de dónde se te ocurre eso viendo el ejercicio?? porque según lo que entiendo tenemos que usar las funciones f(x) o g(x) para demostrar o refutar....
gracias, saludos.


Ese ejercicio de calcular la serie TEX: $$\sum _{ n=1 }^{ \infty  }{ \frac { 1 }{ { \left( 2n-1 \right)  }^{ 4 } }  } $$ me lo encontré en un libro y decía, como pista, que había que considerar esa función. Ahora, yo asumí que se pedía demostrar por los medios que fueran necesarios pozo2005_bylaope.gif


--------------------




Ingeniería Civil 2010 - Casa Central
Go to the top of the page
 
+Quote Post

11 Páginas: V  < 1 2 3 4 5 > » 
Reply to this topicStart new topic
2 usuario(s) está(n) leyendo esta discusión (2 invitado(s) y 0 usuario(s) anónimo(s))
0 miembro(s):

 

Versión Lo-Fi Fecha y Hora actual: 23rd November 2024 - 05:31 PM