Identificarse Registrarse

Psu
Enseñanza Básica
Enseñanza Media
Universidad
Olimpiadas
Comunidad



2 Páginas: V   1 2 >  
Reply to this topicStart new topic
> problema2., 4
Nemesis
mensaje Nov 22 2006, 10:56 PM
Publicado: #1


Maestro Matemático
Ícono de Grupo

Grupo: Usuario FMAT
Mensajes: 124
Registrado: 31-May 06
Miembro Nº: 1.218
Nacionalidad:
Sexo:



Dado el cuadrado ABCD de lado K, donde PC=3PB, QD=2QC y M es el punto de interseccion de DP y AQ, entonces el area del DMQ es:
<!--UserPostedImage-->
screen.width*0.6) {this.resized=true; this.width=screen.width*0.4; this.alt='Pincha Aqui para ver esta imagen en su tamaño original';}" onmouseover="if(this.resized) this.style.cursor='hand';" onclick="if(this.resized) {window.open('http://img220.imageshack.us/img220/4594/sfdsfuk1.jpg');}" />
<!--UserPostedImage-->

se agradece la ayuda, ya que calcule como dos lados y hay quede no puede seguir. helpsmilie.gif helpsmilie.gif helpsmilie.gif

Mensaje modificado por Zirou el Dec 15 2007, 11:07 PM
Go to the top of the page
 
+Quote Post
Nemesis
mensaje Nov 23 2006, 03:05 PM
Publicado: #2


Maestro Matemático
Ícono de Grupo

Grupo: Usuario FMAT
Mensajes: 124
Registrado: 31-May 06
Miembro Nº: 1.218
Nacionalidad:
Sexo:



ayudenme porfa.. dunno.gif
Go to the top of the page
 
+Quote Post
「Krizalid」
mensaje Nov 23 2006, 03:46 PM
Publicado: #3


Staff FMAT
Ícono de Grupo

Grupo: Super Moderador
Mensajes: 8.124
Registrado: 21-May 06
Miembro Nº: 1.156
Nacionalidad:
Sexo:



3era. vez que respondo este ejercicio protesta.gif protesta.gif

Jejeje, no es problema victory.gif

TEX: Por $M$ se traza la perpendicular correspondiente a la base $\overline {QD}$, tal que recaiga en un punto denominado $N$. Si $\overline {PC}  + \overline {PB}  = k$, y dado que $\overline {PC}  = 3\overline {PB}$, entonces podemos obtener en funci\'on de $k$, que $\overline {PC}  = \dfrac{3}{4}k$; an\'alogamente, se tiene que $\overline {QD}  = \dfrac{2}{3}k$.\\<br />\\<br />Por otra parte, se tiene que el $\Delta ADQ \sim \Delta MNQ$, luego:<br /><br />\begin{equation*}<br />\begin{aligned}<br />  \frac{{\overline {AD} }}<br />{{\overline {MN} }} &= \frac{{\overline {QD} }}<br />{{\overline {QN} }} \\ <br />  \frac{k}<br />{{\overline {MN} }} &= \dfrac{{\dfrac{2}<br />{3}k}}<br />{{\overline {QN} }} \\ <br />  \frac{k}<br />{{\overline {MN} }} &= \frac{{2k}}<br />{{3\overline {QN} }} \\ <br />  \frac{1}<br />{{\overline {MN} }} &= \frac{2}<br />{{3\overline {QN} }} \\ <br />  \overline {QN}  &= \frac{2}<br />{3}\overline {MN} {\text{ (1)}} \\ <br />\end{aligned}<br />\end{equation*}\\<br />\\<br />Tambi\'en el $\Delta CPD \sim \Delta NMD$, entonces:<br /><br />\begin{equation*}<br />\begin{aligned}<br />  \frac{{\overline {CP} }}<br />{{\overline {MN} }} &= \frac{{\overline {CD} }}<br />{{\overline {ND} }} \\ <br />  \dfrac{{\dfrac{3}<br />{4}k}}<br />{{\overline {MN} }} &= \dfrac{k}<br />{{\overline {ND} }} \\ <br />  \dfrac{{3k}}<br />{{4\overline {MN} }} &= \frac{k}<br />{{\overline {ND} }} \\ <br />  \frac{3}<br />{{4\overline {MN} }} &= \frac{1}<br />{{\overline {ND} }} \\ <br />  \overline {ND}  &= \frac{{4\overline {MN} }}<br />{3}{\text{ (2)}} \\ <br />\end{aligned}<br />\end{equation*}

TEX: Sumando ordenadamente (1) y (2), considerando que $\overline {QN}  + \overline {ND}  = \overline {QD}  = \dfrac{2}{3}k$, tendremos que:<br /><br />\begin{equation*}<br />\begin{aligned}<br />  \frac{2}<br />{3}\overline {MN}  + \frac{4}<br />{3}\overline {MN}  &= \frac{2}<br />{3}k \\ <br />  6\overline {MN}  &= 2k \\ <br />  \overline {MN}  &= \frac{k}<br />{3} \\ <br />\end{aligned}<br />\end{equation*}

TEX: Finalmente el \'area ser\'a:<br />$$A = \frac{{\overline {MN}  \cdot \overline {QD} }}<br />{2} = \dfrac{{\dfrac{k}<br />{3} \times \dfrac{2}<br />{3}k}}<br />{2} = \dfrac{{2k^2 }}<br />{{9 \cdot 2}} = \frac{{k^2 }}<br />{9}$$

Saludos death.gif death.gif

P.D.: hay que ser paciente, a lo mejor no había tiempo, habían otras cosas que hacer, bueno, de todo.
Go to the top of the page
 
+Quote Post
Nemesis
mensaje Nov 23 2006, 05:05 PM
Publicado: #4


Maestro Matemático
Ícono de Grupo

Grupo: Usuario FMAT
Mensajes: 124
Registrado: 31-May 06
Miembro Nº: 1.218
Nacionalidad:
Sexo:



Hola Krizalid, bueno primero muchas gracias por resolber el ejercicio, de verdad egresado.gif , solo que me quedo una duda cuando resuelbes las proporciones k/mn = 2k/3nq, no entiendo como las haces, multiplicas cruzado, divides, bueno nose, ojala me expliques eso al igual la otra proporcion 3k/4mn = k/nd y porque desaparecen las K?, nose como continuar despues de hay, bueno eso, desde ya muchas gracias. icecream.gif

Pd: Sorry por no ocupar latex pero no me sale jpt_blush.gif

Mensaje modificado por Nemesis el Nov 23 2006, 05:10 PM
Go to the top of the page
 
+Quote Post
「Krizalid」
mensaje Nov 23 2006, 05:12 PM
Publicado: #5


Staff FMAT
Ícono de Grupo

Grupo: Super Moderador
Mensajes: 8.124
Registrado: 21-May 06
Miembro Nº: 1.156
Nacionalidad:
Sexo:



Sugerencias:

http://www.fmat.cl/index.php?showtopic=1339
http://www.fmat.cl/index.php?showtopic=3216&hl=mathtype

No cuesta nada wink.gif victory.gif

Ahora, atendiendo la consulta jpt_chileno.gif

Tenemos que TEX: \[<br />\frac{k}<br />{{\overline {MN} }} = \frac{{\dfrac{2}<br />{3}k}}<br />{{\overline {QN} }}<br />\], luego TEX: \[<br />\frac{k}<br />{{\overline {MN} }} = \frac{{2k}}<br />{{3\overline {QN} }}<br />\], posteriormente se tendrá que TEX: \[<br />\frac{1}<br />{{\overline {MN} }} = \frac{2}<br />{{3\overline {QN} }}<br />\], ahora efectuamos producto en cruz TEX: \[<br />3\overline {QN}  = 2\overline {MN} <br />\], y finalmente, haciendo a TEX: \[<br />\overline {QN} <br />\] el sujeto de la igualdad, tendremos que TEX: \[<br />\overline {QN}  = \frac{2}<br />{3}\overline {MN} <br />\]

He respondido tu duda?, saludos egresado.gif
Go to the top of the page
 
+Quote Post
Nemesis
mensaje Nov 23 2006, 05:44 PM
Publicado: #6


Maestro Matemático
Ícono de Grupo

Grupo: Usuario FMAT
Mensajes: 124
Registrado: 31-May 06
Miembro Nº: 1.218
Nacionalidad:
Sexo:



Gracias!!, la ultima duda como sacaste que TEX: ${QD}  = \dfrac{2}{3}k$ ?
Y lo otro porque cuando resuelbes las proporciones tomas la K como valor 1?o las simplificas, eso no entendi jpt_blush.gif

Mensaje modificado por Nemesis el Nov 23 2006, 05:45 PM
Go to the top of the page
 
+Quote Post
「Krizalid」
mensaje Nov 23 2006, 05:53 PM
Publicado: #7


Staff FMAT
Ícono de Grupo

Grupo: Super Moderador
Mensajes: 8.124
Registrado: 21-May 06
Miembro Nº: 1.156
Nacionalidad:
Sexo:



El enunciado establece que TEX: $\overline {QD}=2\overline {QC}$, pero también sabemos que el cuadrado es de lado TEX: $k$, y por tanto inferir que TEX: $\overline {QC} + \overline {QD}=k$, y ahí se obtiene la expresión que preguntas.

Puede simplificarse TEX: $k$ con toda libertad ya que no puede ser nula (o si no, no existiría cuadrado dunno.gif ).

Saludos death.gif
Go to the top of the page
 
+Quote Post
Nemesis
mensaje Nov 23 2006, 06:13 PM
Publicado: #8


Maestro Matemático
Ícono de Grupo

Grupo: Usuario FMAT
Mensajes: 124
Registrado: 31-May 06
Miembro Nº: 1.218
Nacionalidad:
Sexo:



sip, pero nose que remplazar alli en QC + QD = K, puedes demostrar como sacaste el 2/3k, lo ultimo que te pido, gracias. icecream.gif
Go to the top of the page
 
+Quote Post
「Krizalid」
mensaje Nov 23 2006, 06:19 PM
Publicado: #9


Staff FMAT
Ícono de Grupo

Grupo: Super Moderador
Mensajes: 8.124
Registrado: 21-May 06
Miembro Nº: 1.156
Nacionalidad:
Sexo:



surrender.gif surrender.gif surrender.gif

TEX: Se tiene que $\overline {QC} + \overline {QD}=k$, duplicando cada miembro de la igualdad tenemos que $2\overline {QC} + 2\overline {QD}=2k$, pero $\overline {QD}=2\overline {QC}$, entonces $\overline {QD}  + 2\overline {QD}  = 2k \Leftrightarrow 3\overline {QD}  = 2k \Leftrightarrow \overline {QD}  = \dfrac{2}<br />{3}k$

jpt_chileno.gif jpt_chileno.gif jpt_chileno.gif

surrender.gif
Go to the top of the page
 
+Quote Post
Nemesis
mensaje Nov 23 2006, 06:39 PM
Publicado: #10


Maestro Matemático
Ícono de Grupo

Grupo: Usuario FMAT
Mensajes: 124
Registrado: 31-May 06
Miembro Nº: 1.218
Nacionalidad:
Sexo:



Ahora si que entendi completo el ejercicio, muchas gracias Krizalid!!, saludos. egresado.gif
Go to the top of the page
 
+Quote Post

2 Páginas: V   1 2 >
Reply to this topicStart new topic
1 usuario(s) está(n) leyendo esta discusión (1 invitado(s) y 0 usuario(s) anónimo(s))
0 miembro(s):

 

Versión Lo-Fi Fecha y Hora actual: 27th November 2024 - 01:45 PM