Identificarse Registrarse

Psu
Enseñanza Básica
Enseñanza Media
Universidad
Olimpiadas
Comunidad



 
Reply to this topicStart new topic
> Demuestre Identidad
PaulRS
mensaje Apr 20 2008, 12:54 PM
Publicado: #1


Doctor en Matemáticas
Ícono de Grupo

Grupo: Usuario FMAT
Mensajes: 156
Registrado: 11-June 07
Miembro Nº: 6.615
Nacionalidad:
Sexo:



TEX: $<br />\begin{gathered}<br />  {\text{Demuestre que:}}{\text{ }}\gamma  = \sum\limits_{k = 2}^\infty  {\tfrac{{\left( { - 1} \right)^k  \cdot \zeta \left( k \right)}}<br />{k}}  \hfill \\<br />  {\text{Donde }}\gamma  = \mathop {\lim }\limits_{n \to  + \infty } \left[ {\sum\limits_{k = 1}^n {\left( {\tfrac{1}<br />{k}} \right)}  - \ln \left( {n + 1} \right)} \right]{\text{ y }}\zeta \left( s \right) = \sum\limits_{k = 1}^\infty  {\left( {\tfrac{1}<br />{{k^s }}} \right)}  \hfill \\ <br />\end{gathered} <br />$

Saludos


--------------------
TEX: $\sqrt[3]{\displaystyle\sum_{i=1}^n{i^{3\cdot{\sqrt[]{3}}-1}}}\approx{\displaystyle\sum_{i=1}^n{i^{\sqrt[]{3}-1}}}$
Go to the top of the page
 
+Quote Post
Jean Renard Gran...
mensaje Nov 14 2008, 04:11 PM
Publicado: #2


Dios Matemático Supremo
Ícono de Grupo

Grupo: Usuario FMAT
Mensajes: 1.920
Registrado: 19-August 06
Desde: DIM, DCC Beauchef
Miembro Nº: 1.989
Nacionalidad:
Universidad: Universidad de Chile-FCFM
Sexo:



TEX: $$PDQ$$ TEX: $$\ln \left( {\Gamma \left( {x + 1} \right)} \right) =  - \gamma x + \sum\limits_{j = 2}^\infty  {\frac{{\left( { - 1} \right)^j \zeta \left( j \right)}}{j}} x^j ,\left| x \right| < 1$$

TEX: $$\Gamma \left( {1 + x} \right) = \int_0^\infty  {\phi ^x e^{ - \phi } } d\phi$$

TEX: $$\int_0^\infty  {\phi ^x e^{ - \phi } } d\phi  = \mathop {\lim}\limits_{n \to \infty } \int_0^n {\phi ^x } \left( {1 - \frac{\phi }{n}} \right)^n d\phi$$

TEX: $$\mathop {\lim }\limits_{n \to \infty } \int_0^n {\phi ^x } \left( {1 - \frac{\phi }{n}} \right)^n d\phi$$

TEX: $$\mathop {\lim }\limits_{n \to \infty } n^{x + 1} \int_0^1 {\phi ^x } \left( {1 - \phi } \right)^n d\phi ,\int_0^1 {\phi ^x } \left( {1 - \phi } \right)^n d\phi  = \frac{{n!}}{{\prod\limits_{k = 1}^{n + 1} {\left( {x + k} \right)} }}$$

TEX: $$\mathop {\lim }\limits_{n \to \infty } \frac{{n^{x + 1} n!}}{{\prod\limits_{k = 1}^{n + 1} {\left( {x + k} \right)} }}/\ln \left( {} \right)$$

TEX: $$\ln \left( {\Gamma \left( {1 + x} \right)} \right) = \mathop {\lim }\limits_{n \to \infty } \left[ {\left( {1 + x} \right)\ln \left( n \right) + \ln \left( {n!} \right) - \sum\limits_{k = 1}^{n + 1} {\ln \left( {x + k} \right)} } \right]$$

TEX: $$\mathop {\lim }\limits_{n \to \infty } \left[ {\left( {1 + x} \right)\ln \left( n \right) + \ln \left( {n!} \right) - \sum\limits_{k = 1}^{n + 1} {\ln \left( {x + k} \right)} } \right]/ + \left( {\ln \left( {n + 1} \right) - \ln \left( {n + 1} \right)} \right)$$

TEX: $$\mathop {\lim }\limits_{n \to \infty } \left[ {\left( {1 + x} \right)\ln \left( n \right) - \ln \left( {n + 1} \right) + \sum\limits_{k = 1}^{n + 1} {\ln \left( k \right)}  - \sum\limits_{k = 1}^{n + 1} {\ln \left( {x + k} \right)} } \right]$$

TEX: $$\mathop {\lim }\limits_{n \to \infty } \left[ {\left( {1 + x} \right)\ln \left( n \right) - \ln \left( {n + 1} \right) - \sum\limits_{k = 1}^{n + 1} {\left( {\ln \left( {x + k} \right) - \ln \left( k \right)} \right)} } \right]$$

TEX: $$\mathop {\lim }\limits_{n \to \infty } \left[ {\left( {1 + x} \right)\ln \left( n \right) - \ln \left( {n + 1} \right) - \sum\limits_{k = 1}^{n + 1} {\ln \left( {1 + \frac{x}{k}} \right)} } \right]/ + \left( {\sum\limits_{k = 1}^{n + 1} {\frac{x}{k} - \sum\limits_{k = 1}^{n + 1} {\frac{x}{k}} } } \right)$$

TEX: $$\mathop {\lim }\limits_{n \to \infty } \left[ {x\left( {\ln \left( n \right) - \sum\limits_{k = 1}^{n + 1} {\frac{1}<br />{k}} } \right) - \ln \left( {1 + \frac{1}{n}} \right) - \sum\limits_{k = 1}^{n + 1} {\left( {\ln \left( {1 + \frac{x}{k}} \right) - \frac{x}{k}} \right)} } \right]$$

TEX: $$\mathop {\lim }\limits_{n \to \infty } \left[ {x\left( {\ln \left( n \right) - \sum\limits_{k = 1}^{n + 1} {\frac{1}<br />{k}} } \right) - \ln \left( {1 + \frac{1}{n}} \right) - \sum\limits_{k = 1}^{n + 1} {\sum\limits_{j = 2}^\infty  {\frac{{\left( { - 1} \right)^{j - 1} }}{j}\frac{{x^j }}{{k^j }}} } } \right]$$

TEX: $$\mathop {\lim }\limits_{n \to \infty } \left[ {\underbrace {x\left( {\ln \left( n \right) - \sum\limits_{k = 1}^{n + 1} {\frac{1}{k}} } \right) - \ln \left( {1 + \frac{1}{n}} \right)}_{ - \gamma x} + \underbrace { - \sum\limits_{k = 1}^{n + 1} {\sum\limits_{j = 2}^\infty  {\frac{{\left( { - 1} \right)^{j - 1} }}{j}\frac{{x^j }}{{k^j }}} } }_{\sum\limits_{j = 2}^\infty  {\sum\limits_{k = 1}^\infty  {\frac{{\left( { - 1} \right)^j }}{j}\frac{{x^j }}{{k^j }}}  = \sum\limits_{j = 2}^\infty  {\frac{{\left( { - 1} \right)^j \zeta \left( j \right)}}{j}x^j } } }} \right]$$

TEX: $$\therefore \ln \left( {\Gamma \left( {1 + x} \right)} \right) =  - \gamma x + \sum\limits_{j = 2}^\infty  {\frac{{\left( { - 1} \right)^j \zeta \left( j \right)}}{j}x^j } ,\left| x \right| < 1$$

TEX: $$QED$$

¿Qué pasa cuando TEX: $$x \to 1$$?

TEX: $$\ln \left( {\Gamma \left( 2 \right)} \right) =  - \gamma  + \sum\limits_{j = 2}^\infty  {\frac{{\left( { - 1} \right)^j \zeta \left( j \right)}}{j}}$$

TEX: $$\ln \left( {\Gamma \left( 2 \right)} \right) = \ln \left( {1\Gamma \left( 1 \right)} \right) = \ln \left( 1 \right) = 0$$

TEX: $$0 =  - \gamma  + \sum\limits_{j = 2}^\infty  {\frac{{\left( { - 1} \right)^j \zeta \left( j \right)}}{j}}$$

TEX: $$\therefore \gamma  = \sum\limits_{j = 2}^\infty  {\frac{{\left( { - 1} \right)^j \zeta \left( j \right)}}{j}}$$

Mensaje modificado por neo shykerex el Nov 14 2008, 07:59 PM


--------------------
Miembro de Anime No Seishin Doukokai, podrías ser el próximo.
Go to the top of the page
 
+Quote Post
PaulRS
mensaje Nov 16 2008, 07:57 AM
Publicado: #3


Doctor en Matemáticas
Ícono de Grupo

Grupo: Usuario FMAT
Mensajes: 156
Registrado: 11-June 07
Miembro Nº: 6.615
Nacionalidad:
Sexo:



Excelente! carita2.gif

Otra solución:

Notemos que: TEX: $$<br />A_n  = \sum\limits_{k = 1}^n {\left( {\tfrac{1}<br />{k}} \right)}  - \ln \left( {n + 1} \right) = \sum\limits_{k = 1}^n {\left[ {\tfrac{1}<br />{k} - \ln \left( {1 + \tfrac{1}<br />{k}} \right)} \right]} <br />$$

Por definición: TEX: $$<br />\mathop {\lim }\limits_{n \to  + \infty } A_n  = \gamma <br />$$

Informalmente tenemos: TEX: $$ <br />\ln \left( {1 + \tfrac{1}<br />{k}} \right) = \sum\limits_{j = 1}^\infty  {\tfrac{{\left( { - 1} \right)^{j + 1} }}<br />{{j \cdot k^j }}} <br />$$ y luego: TEX: $$<br />\gamma  = \mathop {\lim }\limits_{n \to  + \infty } A_n  = \sum\limits_{k = 1}^\infty  {\left[ {\tfrac{1}<br />{k} - \ln \left( {1 + \tfrac{1}<br />{k}} \right)} \right]}  = \sum\limits_{k = 1}^\infty  {\sum\limits_{j = 2}^\infty  {\tfrac{{\left( { - 1} \right)^j }}<br />{{j \cdot k^j }}} }  = \sum\limits_{j = 2}^\infty  {\tfrac{{\left( { - 1} \right)^j }}<br />{j} \cdot \sum\limits_{k = 1}^\infty  {\tfrac{1}<br />{{k^j }}} }  = \sum\limits_{j = 2}^\infty  {\tfrac{{\left( { - 1} \right)^j }}<br />{j} \cdot \zeta \left( j \right)} <br />$$

Para más detalles ver el spoiler:


Saludos

Mensaje modificado por PaulRS el Nov 16 2008, 08:05 AM


--------------------
TEX: $\sqrt[3]{\displaystyle\sum_{i=1}^n{i^{3\cdot{\sqrt[]{3}}-1}}}\approx{\displaystyle\sum_{i=1}^n{i^{\sqrt[]{3}-1}}}$
Go to the top of the page
 
+Quote Post

Reply to this topicStart new topic
1 usuario(s) está(n) leyendo esta discusión (1 invitado(s) y 0 usuario(s) anónimo(s))
0 miembro(s):

 

Versión Lo-Fi Fecha y Hora actual: 23rd November 2024 - 10:39 PM