Identificarse Registrarse

Psu
Enseñanza Básica
Enseñanza Media
Universidad
Olimpiadas
Comunidad



 
Reply to this topicStart new topic
> Propuesto 1
fs_tol
mensaje Aug 19 2007, 09:31 PM
Publicado: #1


Dios Matemático Supremo
Ícono de Grupo

Grupo: Usuario FMAT
Mensajes: 670
Registrado: 30-January 06
Desde: Ñuñoa, Santiago
Miembro Nº: 524
Nacionalidad:
Universidad: Universidad de Chile-FCFM
Sexo:



TEX: \noindent Considere $A=\mathbb{Z}\times\mathbb{Z}$. Se define la relaci\'on $\Re$ en $A$ por:\\<br />$$(a_1,a_2) \ \Re \ (b_1,b_2) \iff \exists k \in \mathbb{Z}: a_1+a_2-b_1-b_2=2k$$\\<br />(i) Pruebe que $\Re$ es una relaci\'on de equivalencia.\\<br />(ii) Calcular expl\'icitamente $[(0,0)]_\Re$ y $[(1,0)]_\Re$.\\<br />(iii) Pruebe que $A=[(0,0)]_\Re \cup [(1,0)]_\Re$.\\<br />(iv) Pruebe que existe una biyecci\'on $f: [(1,0)]_\Re \to [(0,0)]_\Re$.


--------------------


TEX: $CARITA$
Go to the top of the page
 
+Quote Post
Gazoo
mensaje Aug 19 2007, 11:03 PM
Publicado: #2


Dios Matemático Supremo
Ícono de Grupo

Grupo: Usuario FMAT
Mensajes: 1.112
Registrado: 21-December 05
Desde: El Bosque - Stgo
Miembro Nº: 473
Colegio/Liceo: Liceo Madre Cecilia Lazzeri
Universidad: Universidad de Santiago
Sexo:



TEX: \[<br />\begin{gathered}<br />  {\text{Voy a hacer el (i)}}{\text{. Y para lograrlo debo probar que }}\Re {\text{ es refleja}}{\text{, }} \hfill \\<br />  {\text{sim\'etrica y transitiva}}{\text{.}} \hfill \\<br />   \hfill \\<br />  \left. {\underline {\, <br /> {{\text{Reflexividad}}} \,}}\! \right|  \hfill \\<br />   \hfill \\<br />  {\text{pd: }}(a_1 ,b_1 )\Re (a_1 ,b_1 ) \hfill \\<br />   \hfill \\<br />  (a_1 ,b_1 )\Re (a_1 ,b_1 ) \Leftrightarrow \exists k \in \mathbb{Z}:a_1  + b_1  - a_1  - b_1  = 2k \hfill \\<br />   \hfill \\<br />  {\text{Como }}\left( {a_1  + b_1  - a_1  - b_1  = 0 = 2 \cdot 0{\text{ }} \wedge {\text{ }}0 \in \mathbb{Z}} \right) \Rightarrow (a_1 ,b_1 )\Re (a_1 ,b_1 ) \Rightarrow \Re {\text{ es refleja}} \hfill \\ <br />\end{gathered} <br />\]<br />

TEX: \[<br />\begin{gathered}<br />  \left. {\underline {\, <br /> {{\text{Simetr\'ia}}} \,}}\! \right|  \hfill \\<br />   \hfill \\<br />  {\text{Si }}(a_1 ,b_1 )\Re (a_2 ,b_2 ),{\text{ pd }}(a_2 ,b_2 )\Re (a_1 ,b_1 ) \hfill \\<br />   \hfill \\<br />  (a_1 ,b_1 )\Re (a_2 ,b_2 ) \Leftrightarrow \exists p \in \mathbb{Z}:a_1  + b_1  - a_2  - b_2  = 2p \Leftrightarrow \exists p \in \mathbb{Z}:a_1  + b_1  - (a_2  + b_2 ) = 2p \hfill \\<br />   \Leftrightarrow (a_2  + b_2 ) - (a_1  + b_1 ) =  - 2p = 2 \cdot ( - p) \hfill \\<br />   \hfill \\<br />  {\text{Como }} - p \in \mathbb{Z} \Rightarrow {\text{ }}\exists k =  - p \in \mathbb{Z}:a_2  + b_2  - a_1  - b_1  = 2k \Leftrightarrow (a_2 ,b_2 )\Re (a_1 ,b_1 ) \hfill \\<br />   \hfill \\<br />  {\text{Luego}}{\text{, es sim\'etrica}}{\text{.}} \hfill \\ <br />\end{gathered} <br />\]<br />

TEX: \[<br />\begin{gathered}<br />  \left. {\underline {\, <br /> {{\text{Transitividad}}} \,}}\! \right|  \hfill \\<br />   \hfill \\<br />  {\text{Si }}(a_1 ,b_1 )\Re (a_2 ,b_2 ){\text{ y }}(a_2 ,b_2 )\Re (a_3 ,b_3 ){\text{, pd }}(a_1 ,b_1 )\Re (a_3 ,b_3 ) \hfill \\<br />   \hfill \\<br />  (a_1 ,b_1 )\Re (a_2 ,b_2 ) \Leftrightarrow \exists m \in \mathbb{Z}:a_1  + b_1  - a_2  - b_2  = 2m \hfill \\<br />  (a_2 ,b_2 )\Re (a_3 ,b_3 ) \Leftrightarrow \exists n \in \mathbb{Z}:a_2  + b_2  - a_3  - b_3  = 2n \hfill \\<br />   \hfill \\<br />   \Rightarrow (a_1  + b_1  - a_2  - b_2 ) + (a_2  + b_2  - a_3  - b_3 ) = 2m + 2n \hfill \\<br />   \Leftrightarrow a_1  + b_1  - a_3  - b_3  = 2(m + n) \hfill \\<br />   \hfill \\<br />  {\text{Como }}m + n \in \mathbb{Z} \Rightarrow \exists k = m + n \in \mathbb{Z}:a_1  + b_1  - a_3  - b_3  = 2(m + n) \Leftrightarrow (a_1 ,b_1 )\Re (a_3 ,b_3 ) \hfill \\<br />   \hfill \\<br />  {\text{Luego}}{\text{, }}\Re {\text{ es transitiva}} \hfill \\<br />   \hfill \\<br />  \therefore {\text{ }}\Re {\text{ es de equivalencia}} \hfill \\ <br />\end{gathered} <br />\]<br />

Saludos y buenas noches x_x


--------------------
"El sentido común es el conjunto de todos los prejuicios adquiridos antes de los 18 años" A. Einstein.






Estudiante Ingeniería Civil Eléctrica - DIE USACH
Go to the top of the page
 
+Quote Post
Uchiha Itachi
mensaje Jan 24 2010, 01:52 AM
Publicado: #3


Staff FMAT
Ícono de Grupo

Grupo: Super Moderador
Mensajes: 4.857
Registrado: 2-January 08
Miembro Nº: 14.268
Nacionalidad:
Colegio/Liceo: The Garden School
Universidad: Universidad de Chile-FCFM
Sexo:



TEX: % MathType!MTEF!2!1!+-<br />% feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn<br />% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr<br />% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9<br />% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x<br />% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaqGPb<br />% GaaeyAaiaabMcaaeaacaqGtbGaaeyzaiaabggacaqGGaGaaeiiamaa<br />% bmaabaGaamyyaiaacYcacaWGIbaacaGLOaGaayzkaaGaeyicI48aam<br />% WaaeaadaqadaqaaiaaicdacaGGSaGaaGimaaGaayjkaiaawMcaaaGa<br />% ay5waiaaw2faamaaBaaaleaacqGHCeIWaeqaaOGaeyO0H49aaeWaae<br />% aacaWGHbGaaiilaiaadkgaaiaawIcacaGLPaaacqGHCeIWdaqadaqa<br />% aiaaicdacaGGSaGaaGimaaGaayjkaiaawMcaaiabgkDiElabgoGiKi<br />% aadUgacqGHiiIZcqWIKeIOcaGG6aGaamyyaiabgUcaRiaadkgacqGH<br />% 9aqpcaaIYaGaam4AaiabgkDiElaadggacqGH9aqpcaaIYaGaam4Aai<br />% abgkHiTiaadkgaaeaacaqGmbGaaeyDaiaabwgacaqGNbGaae4Baiaa<br />% bccacaqG6aGaaeiiaiaabccadaWadaqaamaabmaabaGaaGimaiaacY<br />% cacaaIWaaacaGLOaGaayzkaaaacaGLBbGaayzxaaWaaSbaaSqaaiab<br />% gYricdqabaGccqGH9aqpdaGadaqaamaabmaabaGaamyyaiaacYcaca<br />% WGIbaacaGLOaGaayzkaaGaeyicI4SaeSijHi6aaWbaaSqabeaacaaI<br />% YaaaaOGaai4laiaadUgacqGHiiIZcqWIKeIOcaGG6aGaamyyaiabg2<br />% da9iaaikdacaWGRbGaeyOeI0IaamOyaaGaay5Eaiaaw2haaaqaaaqa<br />% aiaabofacaqGLbGaaeyyaiaabccadaqadaqaaiaadggacaGGSaGaam<br />% OyaaGaayjkaiaawMcaaiabgIGiopaadmaabaWaaeWaaeaacaaIXaGa<br />% aiilaiaaicdaaiaawIcacaGLPaaaaiaawUfacaGLDbaadaWgaaWcba<br />% GaeyihHimabeaakiabgkDiEpaabmaabaGaamyyaiaacYcacaWGIbaa<br />% caGLOaGaayzkaaGaeyihHi8aaeWaaeaacaaIXaGaaiilaiaaicdaai<br />% aawIcacaGLPaaacqGHshI3cqGHdicjcaWGRbGaeyicI4SaeSijHiQa<br />% aiOoaiaadggacqGHRaWkcaWGIbGaeyOeI0IaaGymaiabg2da9iaaik<br />% dacaWGRbGaeyO0H4Taamyyaiabg2da9maabmaabaGaaGOmaiaadUga<br />% cqGHsislcaaIXaaacaGLOaGaayzkaaGaeyOeI0IaamOyaaqaaiaabY<br />% eacaqG1bGaaeyzaiaabEgacaqGVbGaaeiiaiaabQdacaqGGaGaaeii<br />% amaadmaabaWaaeWaaeaacaaIXaGaaiilaiaaicdaaiaawIcacaGLPa<br />% aaaiaawUfacaGLDbaadaWgaaWcbaGaeyihHimabeaakiabg2da9maa<br />% cmaabaWaaeWaaeaacaWGHbGaaiilaiaadkgaaiaawIcacaGLPaaacq<br />% GHiiIZcqWIKeIOdaahaaWcbeqaaiaaikdaaaGccaGGVaGaam4Aaiab<br />% gIGiolablssiIkaacQdacaWGHbGaeyypa0ZaaeWaaeaacaaIYaGaam<br />% 4AaiabgkHiTiaaigdaaiaawIcacaGLPaaacqGHsislcaWGIbaacaGL<br />% 7bGaayzFaaaaaaa!EBD8!<br />\[<br />\begin{gathered}<br />  {\text{ii)}} \hfill \\<br />  {\text{Sea  }}\left( {a,b} \right) \in \left[ {\left( {0,0} \right)} \right]_\Re   \Rightarrow \left( {a,b} \right)\Re \left( {0,0} \right) \Rightarrow \exists k \in \mathbb{Z}:a + b = 2k \Rightarrow a = 2k - b \hfill \\<br />  {\text{Luego :  }}\left[ {\left( {0,0} \right)} \right]_\Re   = \left\{ {\left( {a,b} \right) \in \mathbb{Z}^2 /k \in \mathbb{Z}:a = 2k - b} \right\} \hfill \\<br />   \hfill \\<br />  {\text{Sea }}\left( {a,b} \right) \in \left[ {\left( {1,0} \right)} \right]_\Re   \Rightarrow \left( {a,b} \right)\Re \left( {1,0} \right) \Rightarrow \exists k \in \mathbb{Z}:a + b - 1 = 2k \Rightarrow a = \left( {2k - 1} \right) - b \hfill \\<br />  {\text{Luego :  }}\left[ {\left( {1,0} \right)} \right]_\Re   = \left\{ {\left( {a,b} \right) \in \mathbb{Z}^2 /k \in \mathbb{Z}:a = \left( {2k - 1} \right) - b} \right\} \hfill \\ <br />\end{gathered} <br />\]

TEX: % MathType!MTEF!2!1!+-<br />% feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn<br />% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr<br />% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9<br />% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x<br />% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaqGPb<br />% GaaeyAaiaabMgacaqGPaaabaGaae4uaiaabwgacaqGHbGaaeiiaiaa<br />% bccadaqadaqaaiaadggacaGGSaGaamOyaaGaayjkaiaawMcaaiabgI<br />% GiopaadmaabaWaaeWaaeaacaaIXaGaaiilaiaaicdaaiaawIcacaGL<br />% PaaaaiaawUfacaGLDbaadaWgaaWcbaGaeyihHimabeaakiabgQIiip<br />% aadmaabaWaaeWaaeaacaaIWaGaaiilaiaaicdaaiaawIcacaGLPaaa<br />% aiaawUfacaGLDbaadaWgaaWcbaGaeyihHimabeaakiabgsDiBpaabm<br />% aabaGaamyyaiaacYcacaWGIbaacaGLOaGaayzkaaGaeyicI48aamWa<br />% aeaadaqadaqaaiaaigdacaGGSaGaaGimaaGaayjkaiaawMcaaaGaay<br />% 5waiaaw2faamaaBaaaleaacqGHCeIWaeqaaOGaeyikIO9aaeWaaeaa<br />% caWGHbGaaiilaiaadkgaaiaawIcacaGLPaaacqGHiiIZdaWadaqaam<br />% aabmaabaGaaGimaiaacYcacaaIWaaacaGLOaGaayzkaaaacaGLBbGa<br />% ayzxaaWaaSbaaSqaaiabgYricdqabaaakeaacqGHuhY2caWGRbGaey<br />% icI4SaeSijHiQaaiOoaiaadggacqGH9aqpcaaIYaGaam4AaiabgkHi<br />% TiaadkgacqGHOiI2caWGHbGaeyypa0ZaaeWaaeaacaaIYaGaam4Aai<br />% abgkHiTiaaigdaaiaawIcacaGLPaaacqGHsislcaWGIbaabaGaeyi1<br />% HSTaam4AaiabgIGiolablssiIkaacQdacaWGHbGaey4kaSIaamOyai<br />% abg2da9iaaikdacaWGRbGaeyikIOTaamyyaiabgUcaRiaadkgacqGH<br />% 9aqpcaaIYaGaam4AaiabgkHiTiaaigdaaaaa!9CF9!<br />\[<br />\begin{gathered}<br />  {\text{iii)}} \hfill \\<br />  {\text{Sea  }}\left( {a,b} \right) \in \left[ {\left( {1,0} \right)} \right]_\Re   \cup \left[ {\left( {0,0} \right)} \right]_\Re   \Leftrightarrow \left( {a,b} \right) \in \left[ {\left( {1,0} \right)} \right]_\Re   \vee \left( {a,b} \right) \in \left[ {\left( {0,0} \right)} \right]_\Re   \hfill \\<br />   \Leftrightarrow k \in \mathbb{Z}:a = 2k - b \vee a = \left( {2k - 1} \right) - b \hfill \\<br />   \Leftrightarrow k \in \mathbb{Z}:a + b = 2k \vee a + b = 2k - 1 \hfill \\ <br />\end{gathered} <br />\]

TEX: % MathType!MTEF!2!1!+-<br />% feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn<br />% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr<br />% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9<br />% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x<br />% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaqGmb<br />% GaaeyDaiaabwgacaqGNbGaae4BaiaabQdacaqGGaWaamWaaeaadaqa<br />% daqaaiaaigdacaGGSaGaaGimaaGaayjkaiaawMcaaaGaay5waiaaw2<br />% faamaaBaaaleaacqGHCeIWaeqaaOGaeyOkIG8aamWaaeaadaqadaqa<br />% aiaaicdacaGGSaGaaGimaaGaayjkaiaawMcaaaGaay5waiaaw2faam<br />% aaBaaaleaacqGHCeIWaeqaaOGaeyypa0ZaaiWaaeaadaqadaqaaiaa<br />% dggacaGGSaGaamOyaaGaayjkaiaawMcaaiabgIGiolablssiIoaaCa<br />% aaleqabaGaaGOmaaaakiaac+cacaWGRbGaeyicI4SaeSijHiQaaiOo<br />% aiaadggacqGHRaWkcaWGIbGaeyypa0JaaGOmaiaadUgacqGHOiI2ca<br />% WGHbGaey4kaSIaamOyaiabg2da9iaaikdacaWGRbGaeyOeI0IaaGym<br />% aaGaay5Eaiaaw2haaaqaaiaabgeacaqGZbGaaeyAaiaabccacaqGZb<br />% GaaeyzaiaabccacaqGZbGaaeyAaiaabEgacaqG1bGaaeyzaiaabcca<br />% caqGXbGaaeyDaiaabwgacaqGGaGaaeiiamaadmaabaWaaeWaaeaaca<br />% aIXaGaaiilaiaaicdaaiaawIcacaGLPaaaaiaawUfacaGLDbaadaWg<br />% aaWcbaGaeyihHimabeaakiabgQIiipaadmaabaWaaeWaaeaacaaIWa<br />% GaaiilaiaaicdaaiaawIcacaGLPaaaaiaawUfacaGLDbaadaWgaaWc<br />% baGaeyihHimabeaakiabg2da9iablssiIkaadIhacqWIKeIOaeaaae<br />% aacaqGPbGaaeODaiaabMcaaeaacaqGtbGaaeyzaiaabggacaqGGaGa<br />% aeiiaiaadAgacaGG6aWaamWaaeaadaqadaqaaiaaigdacaGGSaGaaG<br />% imaaGaayjkaiaawMcaaaGaay5waiaaw2faamaaBaaaleaacqGHCeIW<br />% aeqaaOGaeyOKH46aamWaaeaadaqadaqaaiaaicdacaGGSaGaaGimaa<br />% GaayjkaiaawMcaaaGaay5waiaaw2faamaaBaaaleaacqGHCeIWaeqa<br />% aOGaaeilaiaabccacaqGKbGaaeyzaiaabAgacaqGPbGaaeOBaiaabg<br />% gacaqGTbGaae4BaiaabohacaqGSbGaaeyyaiaabccacaqGJbGaae4B<br />% aiaab2gacaqGVbGaaeiiaiaabohacaqGPbGaae4zaiaabwhacaqGLb<br />% GaaeiiaiaabQdacaqGGaGaaeiiaiaadAgadaqadaqaaiaaikdacaWG<br />% RbGaeyOeI0IaaGymaiabgkHiTiaadkgacaGGSaGaamOyaaGaayjkai<br />% aawMcaaiabg2da9maabmaabaGaaGOmaiaadUgacqGHsislcaWGIbGa<br />% aiilaiaadkgaaiaawIcacaGLPaaaaeaacaqGbbGaae4CaiaabMgaca<br />% qGGaGaaeOoaaqaaiaadAgadaqadaqaaiaaikdacaWGRbWaaSbaaSqa<br />% aiaaigdaaeqaaOGaeyOeI0IaaGymaiabgkHiTiaadkgadaWgaaWcba<br />% GaaGymaaqabaGccaGGSaGaamOyamaaBaaaleaacaaIXaaabeaaaOGa<br />% ayjkaiaawMcaaiabg2da9iaadAgadaqadaqaaiaaikdacaWGRbWaaS<br />% baaSqaaiaaikdaaeqaaOGaeyOeI0IaaGymaiabgkHiTiaadkgadaWg<br />% aaWcbaGaaGOmaaqabaGccaGGSaGaamOyamaaBaaaleaacaaIYaaabe<br />% aaaOGaayjkaiaawMcaaiabgsDiBpaabmaabaGaaGOmaiaadUgadaWg<br />% aaWcbaGaaGymaaqabaGccqGHsislcaWGIbWaaSbaaSqaaiaaigdaae<br />% qaaOGaaiilaiaadkgadaWgaaWcbaGaaGymaaqabaaakiaawIcacaGL<br />% PaaacqGH9aqpdaqadaqaaiaaikdacaWGRbWaaSbaaSqaaiaaikdaae<br />% qaaOGaeyOeI0IaamOyamaaBaaaleaacaaIYaaabeaakiaacYcacaWG<br />% IbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaabaGaamOzam<br />% aabmaabaGaaGOmaiaadUgadaWgaaWcbaGaaGymaaqabaGccqGHsisl<br />% caaIXaGaeyOeI0IaamOyamaaBaaaleaacaaIXaaabeaakiaacYcaca<br />% WGIbWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaGaeyypa0Ja<br />% amOzamaabmaabaGaaGOmaiaadUgadaWgaaWcbaGaaGOmaaqabaGccq<br />% GHsislcaaIXaGaeyOeI0IaamOyamaaBaaaleaacaaIYaaabeaakiaa<br />% cYcacaWGIbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaey<br />% i1HS9aaucfaqaabeqaaiaadkgadaWgaaWcbaGaaGymaaqabaGccqGH<br />% 9aqpcaWGIbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaaGOmaiaadUgada<br />% WgaaWcbaGaaGymaaqabaGccqGHsislcaWGIbWaaSbaaSqaaiaaigda<br />% aeqaaOGaeyypa0JaaGOmaiaadUgadaWgaaWcbaGaaGOmaaqabaGccq<br />% GHsislcaWGIbWaaSbaaSqaaiaaikdaaeqaaaaaaaGcbaWaaeWaaeaa<br />% caaIYaGaam4AamaaBaaaleaacaaIXaaabeaakiabgkHiTiaaigdacq<br />% GHsislcaWGIbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadkgadaWg<br />% aaWcbaGaaGymaaqabaaakiaawIcacaGLPaaacqGH9aqpcaWGMbWaae<br />% WaaeaacaaIYaGaam4AamaaBaaaleaacaaIYaaabeaakiabgkHiTiaa<br />% igdacqGHsislcaWGIbWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiaadk<br />% gadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaacqGHuhY2caWG<br />% RbWaaSbaaSqaaiaaigdaaeqaaOGaeyypa0Jaam4AamaaBaaaleaaca<br />% aIYaaabeaakiabgEIizlaadkgadaWgaaWcbaGaaGymaaqabaGccqGH<br />% 9aqpcaWGIbWaaSbaaSqaaiaaikdaaeqaaaGcbaWaaeWaaeaacaaIYa<br />% Gaam4AamaaBaaaleaacaaIXaaabeaakiabgkHiTiaaigdacqGHsisl<br />% caWGIbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadkgadaWgaaWcba<br />% GaaGymaaqabaaakiaawIcacaGLPaaacqGH9aqpcaWGMbWaaeWaaeaa<br />% caaIYaGaam4AamaaBaaaleaacaaIYaaabeaakiabgkHiTiaaigdacq<br />% GHsislcaWGIbWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiaadkgadaWg<br />% aaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaadaqadaqaaiaaikdaca<br />% WGRbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaaGymaiabgkHiTiaa<br />% dkgadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamOyamaaBaaaleaaca<br />% aIXaaabeaaaOGaayjkaiaawMcaamaabmaabaGaaGOmaiaadUgadaWg<br />% aaWcbaGaaGOmaaqabaGccqGHsislcaaIXaGaeyOeI0IaamOyamaaBa<br />% aaleaacaaIYaaabeaakiaacYcacaWGIbWaaSbaaSqaaiaaikdaaeqa<br />% aaGccaGLOaGaayzkaaaabaaabaGaaeywaiaabccacaqG0bGaaeyyai<br />% aab2gacaqGIbGaaeyAaiaabwgacaqGUbGaaeiiaiaabQdaaeaacaqG<br />% tbGaaeyzaiaabggacaqGGaGaaeiiamaabmaabaGaaGOmaiaadUgacq<br />% GHsislcaaIXaGaeyOeI0IaamOyaiaacYcacaWGIbaacaGLOaGaayzk<br />% aaGaeyicI4SaeSijHi6aaWbaaSqabeaacaaIYaaaaOGaaeilaiaabc<br />% cacaqGSbGaaeyDaiaabwgacaqGNbGaae4BaiaabccacaqG6aGaaeii<br />% aiaabccacaWGMbWaaeWaaeaacaaIYaGaam4AaiabgkHiTiaaigdacq<br />% GHsislcaWGIbGaaiilaiaadkgaaiaawIcacaGLPaaacqGH9aqpdaqa<br />% daqaaiaaikdacaWGRbGaeyOeI0IaamOyaiaacYcacaWGIbaacaGLOa<br />% GaayzkaaGaaeilaiaabccacaqGVbGaae4CaiaabwgacaqGHbGaaeii<br />% aiaabohacaqGPbGaaeyzaiaab2gacaqGWbGaaeOCaiaabwgacaqGGa<br />% GaaeyzaiaabohacaqGGaGaaeiCaiaab+gacaqGZbGaaeyAaiaabkga<br />% caqGSbGaaeyzaaqaaiaabwgacaqGUbGaae4yaiaab+gacaqGUbGaae<br />% iDaiaabkhacaqGHbGaaeiiaiaabwhacaqGUbGaaeiiaiaabwgacaqG<br />% SbGaaeyzaiaab2gacaqGLbGaaeOBaiaabshacaqGVbGaaeiiaiaabs<br />% gacaqGLbGaaeiiaiablssiIoaaCaaaleqabaGaaGOmaaaakiaabcca<br />% caqGWbGaaeyyaiaabkhacaqGHbGaaeiiaiaabogacaqG1bGaaeyyai<br />% aabYgacaqGXbGaaeyDaiaabMgacaqGLbGaaeOCaiaabccacaqGLbGa<br />% aeiBaiaabwgacaqGTbGaaeyzaiaab6gacaqG0bGaae4Baiaabccaca<br />% qGKbGaaeyzaiaabccacaqGSbGaaeiBaiaabwgacaqGNbGaaeyyaiaa<br />% bsgacaqGHbGaaeOlaaqaaaqaaiaabcfacaqGVbGaaeOCaiaabccaca<br />% qGSbGaae4BaiaabccacaqGHbGaaeOBaiaabshacaqGLbGaaeOCaiaa<br />% bMgacaqGVbGaaeOCaiaabYcacaqGGaGaaeyzaiaabIhacaqGPbGaae<br />% 4CaiaabshacaqGLbGaaeiiaiaabwhacaqGUbGaaeyyaiaabccacaqG<br />% IbGaaeyAaiaabMhacaqGLbGaae4yaiaabogacaqGPbGaae4Baiaab6<br />% gacaqGGaGaaeiiaiaadAgacaGG6aWaamWaaeaadaqadaqaaiaaigda<br />% caGGSaGaaGimaaGaayjkaiaawMcaaaGaay5waiaaw2faamaaBaaale<br />% aacqGHCeIWaeqaaOGaeyOKH46aamWaaeaadaqadaqaaiaaicdacaGG<br />% SaGaaGimaaGaayjkaiaawMcaaaGaay5waiaaw2faamaaBaaaleaacq<br />% GHCeIWaeqaaaaaaa!38D7!<br />\[<br />\begin{gathered}<br />  {\text{Luego: }}\left[ {\left( {1,0} \right)} \right]_\Re   \cup \left[ {\left( {0,0} \right)} \right]_\Re   = \left\{ {\left( {a,b} \right) \in \mathbb{Z}^2 /k \in \mathbb{Z}:a + b = 2k \vee a + b = 2k - 1} \right\} \hfill \\<br />  {\text{Asi se sigue que  }}\left[ {\left( {1,0} \right)} \right]_\Re   \cup \left[ {\left( {0,0} \right)} \right]_\Re   = \mathbb{Z}x\mathbb{Z} \hfill \\<br />   \hfill \\<br />  {\text{iv)}} \hfill \\<br />  {\text{Sea  }}f:\left[ {\left( {1,0} \right)} \right]_\Re   \to \left[ {\left( {0,0} \right)} \right]_\Re  {\text{, definamosla como sigue :  }}f\left( {2k - 1 - b,b} \right) = \left( {2k - b,b} \right) \hfill \\<br />  {\text{Asi :}} \hfill \\<br />  f\left( {2k_1  - 1 - b_1 ,b_1 } \right) = f\left( {2k_2  - 1 - b_2 ,b_2 } \right) \Leftrightarrow \left( {2k_1  - b_1 ,b_1 } \right) = \left( {2k_2  - b_2 ,b_2 } \right) \hfill \\<br />  f\left( {2k_1  - 1 - b_1 ,b_1 } \right) = f\left( {2k_2  - 1 - b_2 ,b_2 } \right) \Leftrightarrow \left. {\underline {\, <br /> \begin{gathered}<br />  b_1  = b_2  \hfill \\<br />  2k_1  - b_1  = 2k_2  - b_2  \hfill \\ <br />\end{gathered}  \,}}\! \right|  \hfill \\<br />  \left( {2k_1  - 1 - b_1 ,b_1 } \right) = f\left( {2k_2  - 1 - b_2 ,b_2 } \right) \Leftrightarrow k_1  = k_2  \wedge b_1  = b_2  \hfill \\<br />  \left( {2k_1  - 1 - b_1 ,b_1 } \right) = f\left( {2k_2  - 1 - b_2 ,b_2 } \right)\left( {2k_1  - 1 - b_1 ,b_1 } \right)\left( {2k_2  - 1 - b_2 ,b_2 } \right) \hfill \\<br />   \hfill \\<br />  {\text{Y tambien :}} \hfill \\<br />  {\text{Sea  }}\left( {2k - 1 - b,b} \right) \in \mathbb{Z}^2 {\text{, luego :  }}f\left( {2k - 1 - b,b} \right) = \left( {2k - b,b} \right){\text{, osea siempre es posible}} \hfill \\<br />  {\text{encontra un elemento de }}\mathbb{Z}^2 {\text{ para cualquier elemento de llegada}}{\text{.}} \hfill \\<br />   \hfill \\<br />  {\text{Por lo anterior}}{\text{, existe una biyeccion  }}f:\left[ {\left( {1,0} \right)} \right]_\Re   \to \left[ {\left( {0,0} \right)} \right]_\Re   \hfill \\ <br />\end{gathered} <br />\]


--------------------
Candidato a doctor en Cs. De la ingeniería mención modelamiento matemático, DIM. Universidad de Chile

Magíster en ciencias mención matemática,
Profesor de estado en matemáticas y computación,
Licenciado en educación matemáticas y computación,
USACH
Go to the top of the page
 
+Quote Post

Reply to this topicStart new topic
1 usuario(s) está(n) leyendo esta discusión (1 invitado(s) y 0 usuario(s) anónimo(s))
0 miembro(s):

 

Versión Lo-Fi Fecha y Hora actual: 23rd November 2024 - 04:37 PM