Identificarse Registrarse

Psu
Enseñanza Básica
Enseñanza Media
Universidad
Olimpiadas
Comunidad



 
Reply to this topicStart new topic
> Guía VII de Variable Compleja, Prof. Dr. Carlos Lizama
ciunhaly
mensaje Jul 19 2007, 01:16 AM
Publicado: #1


Maestro Matemático
Ícono de Grupo

Grupo: Colaborador Silver
Mensajes: 128
Registrado: 30-June 06
Desde: En Rio de Janeiro, Brasil
Miembro Nº: 1.477
Nacionalidad:
Universidad: Universidad Federal de Rio de Janeiro (UFRJ)
Sexo:



TEX: \begin{center}<br />{\Huge Gu\'ia $N^o 7$}\\<br />{\large Variable Compleja}<br />\end{center}<br />\begin{enumerate}<br />  \item  Sea $y > 0$. Demuestre que para cada $x\geq0$ se tiene<br />        \[ \displaystyle{\int_{-\infty}^{\infty}\frac{e^{-isx}}{s^2+t^2}ds=\frac{\pi}{t}e^{-tx}} \]<br />  \item  Sean $a, b \in \mathbb{R}$ tales que $a > 0$ y $b > 0$. Demuestre que \[ \displaystyle{\int_{-\infty}^{\infty}\frac{x^2-b^2}{x^2+b^2}\;\;\frac{\sin(ax)}{x} dx=\pi\left(  e^{-ab}-\frac{1}{2} \right)} \]<br />  \item  Demuestre que<br />          \[ \displaystyle{\int_{0}^{\infty}\frac{dx}{x^6+b^1}=\frac{\pi}{3} }  \]<br />  \item  Demuestre que<br />          \[ \displaystyle{\int_{0}^{2\pi}\frac{\cos(3\theta)}{5-4\cos(\theta)}d\theta=\frac{\pi}{12} } \]<br />  \item  Demuestre que<br />          \[ \displaystyle{\int_{0}^{2\pi}\frac{d\theta}{(5-3\sin(\theta))^2}=\frac{5\pi}{32} } \]<br />  \item  Demuestre que<br />          \[ \displaystyle{\int_{0}^{\infty}\frac{\cos(mx)}{x^2+1}dx=\frac{\pi}{2}e^{-m},\;\;\;m>0 } \]<br />  \item  Demuestre que<br />          \[ \displaystyle{\int_{0}^{\infty}\frac{\cosh(ax)}{\cosh(x)}dx=\frac{\pi}{2\cos\left( \dfrac{\pi a}{2}\right)},\;\;\;donde\;\;\;|a|<1 } \]<br />\end{enumerate}


--------------------
_______________________________________________________________

"La primera regla de la enseñanza es saber lo que se debe enseñar. La segunda, es saber un poco más de aquello que se debe enseñar". George Polya



Eu sou uma estudante da UFRJ.
Go to the top of the page
 
+Quote Post
master_c
mensaje May 25 2011, 11:52 PM
Publicado: #2





Invitado






para el 5
TEX: $\int_0^{2\pi } {\frac{{d\theta }}{{\left( {5 - 3\sin \theta } \right)^2 }} = } 4i\int_\gamma  {\frac{{zdz}}{{\left( {3z^2  - 10iz - 3} \right)^2 }} = } \frac{{4i}}{9}\int_\gamma  {\frac{{zdz}}{{\left( {\left( {z - 3i} \right)\left( {z - \frac{i}{3}} \right)} \right)^2 }}}$
TEX: $$<br />\frac{{4i}}<br />{9} \cdot 2\pi i\mathop {\lim }\limits_{z \to \frac{i}<br />{3}} \frac{d}<br />{{dz}}\left( {\left( {z - \frac{i}<br />{3}} \right)\frac{z}<br />{{\left( {\left( {z - 3i} \right)\left( {z - \frac{i}<br />{3}} \right)} \right)^2 }}} \right) = \frac{8}<br />{9}\pi \left( {\frac{{16 + 64}}<br />{9}} \right) \cdot \frac{{9^2 }}<br />{{8^4 }} = \pi \left( {\frac{{16 + 64}}<br />{{8^3 }}} \right) = \frac{5}<br />{{32}}\pi <br />$$
Go to the top of the page
 
+Quote Post
master_c
mensaje May 26 2011, 11:06 AM
Publicado: #3





Invitado






para el 6
TEX: $$<br />\int_0^{ + \infty } {\frac{{\cos ax}}<br />{{x^2  + b^2 }}} dx = \frac{1}<br />{2}\int_{ - \infty }^{ + \infty } {\frac{{\cos ax}}<br />{{x^2  + b^2 }}} dx = \frac{1}<br />{2}\Re e\left( {2\pi i\Re es\left( {\frac{{e^{iaz} }}<br />{{z^2  + b^2 }},ib} \right)} \right) = \frac{1}<br />{2}\Re e\left( {2\pi i\frac{{e^{ - ab} }}<br />{{2ib}}} \right) = \frac{{\pi e^{ - ab} }}<br />{{2b}}<br />$$

haciendo TEX: $b = 1$ se obtiene lo pedido
Go to the top of the page
 
+Quote Post
master_c
mensaje May 26 2011, 02:01 PM
Publicado: #4





Invitado






algo mas general
TEX: $$<br />\int_{ - \infty }^{ + \infty } {\frac{{\cosh ax}}<br />{{\left( {\cosh x} \right)^b }}dx = 2^{b - 1} \frac{{\Gamma \left( {\frac{{b + a}}<br />{2}} \right)\Gamma \left( {\frac{{b - a}}<br />{2}} \right)}}<br />{{\Gamma \left( b \right)}}} <br />$$
Go to the top of the page
 
+Quote Post
master_c
mensaje May 28 2011, 05:28 PM
Publicado: #5





Invitado






para el 4) previo TEX: $\cos 3x = \cos x\left( {\cos ^2 x - 3\sin ^2 x} \right) = \cos x\left( {1 - 4\sin ^2 x} \right)$
entonces
TEX: $$<br />I = \int_0^{2\pi } {\frac{{\cos 3x}}<br />{{5 - 4\cos x}}dx}  = \frac{i}<br />{2}\int_\gamma  {\frac{{\left( {z^2  + 1} \right)\left( {z^2  + \left( {z^2  - 1} \right)^2 } \right)}}<br />{{z^3 \left( {2z^2  - 5z + 2} \right)}}} dz = \frac{i}<br />{4}\int_\gamma  {\frac{{z^6  + 1}}<br />{{z^3 \left( {z - 2} \right)\left( {z - \frac{1}<br />{2}} \right)}}} dz<br />$$
TEX: $$<br /> =  - \frac{\pi }<br />{2}\left( {\Re es\left( {f\left( z \right),z = 0} \right) + \Re es\left( {f\left( z \right),z = \frac{1}<br />{2}} \right)} \right) =  - \frac{\pi }<br />{2}\left( {\frac{{63}}<br />{{12}} +  - \frac{{65}}<br />{{12}}} \right) = \frac{\pi }<br />{{12}}<br />$$
ya que
TEX: $$<br />\Re es\left( {f\left( z \right),z = 0} \right) = \frac{1}<br />{{2!}}\mathop {\lim }\limits_{z \to z_0 } \frac{{d^2 }}<br />{{dz^2 }}\left( {\frac{{\left( {z^2  + 1} \right)\left( {z^4  - \left( {z^2  - 1} \right)} \right)}}<br />{{\left( {z - 2} \right)\left( {z - \frac{1}<br />{2}} \right)}}} \right) = \mathop {\lim }\limits_{z \to z_0 } \frac{{d^2 }}<br />{{dz^2 }}\left( {\frac{{z^6  + 1}}<br />{{2z^2  - 5z + 2}}} \right) = \frac{{21}}<br />{4}<br />$$
y
TEX: $$<br />\Re es\left( {f\left( z \right),z = \frac{1}<br />{2}} \right) = \frac{{\frac{1}<br />{{2^6 }} + 1}}<br />{{\frac{1}<br />{{2^3 }}\left( {\frac{1}<br />{2} - 2} \right)}} = \frac{{\frac{{65}}<br />{{8^2 }}}}<br />{{\frac{1}<br />{8} \cdot \frac{{ - 3}}<br />{2}}} =  - \frac{{65}}<br />{{12}}<br />$$

Go to the top of the page
 
+Quote Post
master_c
mensaje May 29 2011, 09:16 PM
Publicado: #6





Invitado






para 3) el denominador vale
TEX: $\left( {x + i\root 6 \of b } \right)\left( {x - i\root 6 \of b } \right)\left( {x - \frac{{\root 6 \of b }}{{\sqrt 2 }}\sqrt {1 + i\sqrt 3 } } \right)\left( {x + \frac{{\root 6 \of b }}{{\sqrt 2 }}\sqrt {1 - i\sqrt 3 } } \right)\left( {x - \frac{{\root 6 \of b }}{{\sqrt 2 }}\sqrt {1 - i\sqrt 3 } } \right)\left( {x + \frac{{\root 6 \of b }}{{\sqrt 2 }}\sqrt {1 + i\sqrt 3 } } \right)$

donde facilmente se desprende que
TEX: $\sqrt {1 \pm i\sqrt 3 }  = \sqrt {\frac{3}{2}}  \pm \sqrt {\frac{{ - 1}}{2}}  = \frac{{\sqrt 2 }}{2}\left( {\sqrt 3  \pm i} \right)$
aplicando teorema (ya que se cumple las propiedades no existen polos sobre el eje real y TEX: $f\left( {\frac{1}{z}} \right)$ tiene al menos un cero de orden dos en TEX: $ z = 0 $ )

consideramos la suma solo de polos en el semiplano superior

TEX: $\int_0^{ + \infty } {\frac{{dx}}{{b + x^6 }}}  = \frac{\pi }{{3\root 6 \of {b^5 } }} \Rightarrow \int_0^{ + \infty } {\frac{{dx}}{{1 + x^6 }}}  = \frac{\pi }{3}$
yo creo que ese 'b' nunca existio sino que es un 1, saludos
para el uno puedes dar un hint, solo se que
TEX: $\left| {dz} \right| = \left| {dx + idy} \right| = \sqrt {\left( {dx} \right)^2  + \left( {dy} \right)^2 }  = ds$
pero no logro expresar s como una longitud de arco...


Mensaje modificado por master_c el May 30 2011, 06:17 PM
Go to the top of the page
 
+Quote Post
master_c
mensaje Jun 6 2011, 02:24 PM
Publicado: #7





Invitado






la dos debes corregirla pues el verdadero resultado es
TEX: $$<br />\int_{ - \infty }^{ + \infty } {\frac{{x^2  - b^2 }}<br />{{x^2  + b^2 }}} \frac{{\sin ax}}<br />{x}dx = \pi \left( {2e^{ - ab}  - 1} \right)<br />$$

la hice por variable compleja y calculo avanzado y creo que te falto un dos


Mensaje modificado por master_c el Jun 6 2011, 02:25 PM
Go to the top of the page
 
+Quote Post
master_c
mensaje Jan 10 2013, 11:38 AM
Publicado: #8





Invitado






para 7) Manipulando la integral
TEX: $$<br />K\left( a \right) = \int\limits_0^{ + \infty } {\frac{{\cosh ax}}<br />{{\cosh x}}dx}  = \int\limits_0^{ + \infty } {\frac{{e^{ax}  + e^{ - ax} }}<br />{{e^x  + e^{ - x} }}dx}  = \int\limits_0^{ + \infty } {\frac{{\left( {e^{ax}  + e^{ - ax} } \right)e^{ - x} }}<br />{{1 + e^{ - 2x} }}dx}  = \int\limits_0^{ + \infty } {\frac{{e^{ - \left( {1 - a} \right)x}  + e^{ - \left( {1 + a} \right)x} }}<br />{{1 + e^{ - 2x} }}dx} <br />$$

TEX: $$<br /> = \int\limits_0^{ + \infty } {\sum\limits_{n = 0}^{ + \infty } {\left( { - 1} \right)^n e^{ - 2nx} \left( {e^{ - \left( {1 - a} \right)x}  + e^{ - \left( {1 + a} \right)x} } \right)dx} }  = \sum\limits_{n = 0}^{ + \infty } {\left( { - 1} \right)^n \int\limits_0^{ + \infty } {\left( {e^{ - \left( {2n + 1 - a} \right)x}  + e^{ - \left( {2n + 1 + a} \right)x} } \right)dx} } <br />$$

TEX: $$<br /> = \sum\limits_{n = 0}^{ + \infty } {\left( { - 1} \right)^n \left( {\frac{1}<br />{{2n + 1 - a}} + \frac{1}<br />{{2n + 1 + a}}} \right)}  = \frac{1}<br />{2}\sum\limits_{n = 0}^{ + \infty } {\left( { - 1} \right)^n \left( {\frac{1}<br />{{n + \frac{1}<br />{2} - \frac{a}<br />{2}}} + \frac{1}<br />{{n + \frac{1}<br />{2} + \frac{a}<br />{2}}}} \right)} <br />$$

TEX: $$<br /> = \frac{1}<br />{2}\left( {\sum\limits_{n = 0}^{ + \infty } {\frac{{\left( { - 1} \right)^n }}<br />{{n + \frac{1}<br />{2} - \frac{a}<br />{2}}} + \sum\limits_{n = 0}^{ + \infty } {\frac{{\left( { - 1} \right)^n }}<br />{{n + 1 - \left( {\frac{1}<br />{2} - \frac{a}<br />{2}} \right)}}} } } \right) = \frac{1}<br />{2}\left( {\frac{1}<br />{{\frac{1}<br />{2} - \frac{a}<br />{2}}} + \sum\limits_{n = 1}^{ + \infty } {\frac{{\left( { - 1} \right)^n }}<br />{{n + \frac{1}<br />{2} - \frac{a}<br />{2}}} + \sum\limits_{n = 1}^{ + \infty } {\frac{{\left( { - 1} \right)^{n - 1} }}<br />{{n - \left( {\frac{1}<br />{2} - \frac{a}<br />{2}} \right)}}} } } \right)<br />$$

TEX: $$<br /> = \frac{1}<br />{2}\left( {\frac{1}<br />{{\frac{1}<br />{2} - \frac{a}<br />{2}}} + \sum\limits_{n = 1}^{ + \infty } {\frac{{\left( { - 1} \right)^n }}<br />{{\frac{1}<br />{2} - \frac{a}<br />{2} + n}} + \sum\limits_{n = 1}^{ + \infty } {\frac{{\left( { - 1} \right)^n }}<br />{{\frac{1}<br />{2} - \frac{a}<br />{2} - n}}} } } \right) = \frac{1}<br />{2}\sum\limits_{n =  - \infty }^{ + \infty } {\frac{{\left( { - 1} \right)^n }}<br />{{\frac{1}<br />{2} - \frac{a}<br />{2} + n}}} <br />$$

Considere la identidad
TEX: $$<br />\sin \pi z = \pi z\prod\limits_{n = 1}^{ + \infty } {\left( {1 - \frac{{z^2 }}<br />{{n^2 }}} \right)} <br />$$

TEX: $$<br />\ln \sin \pi z = \ln \pi  + \ln z + \sum\limits_{n = 1}^{ + \infty } {\ln \left( {1 - \frac{{z^2 }}<br />{{n^2 }}} \right)} <br />$$

TEX: $$<br />\frac{{\pi \cos \pi z}}<br />{{\sin \pi z}} = \frac{1}<br />{z} - \sum\limits_{n = 1}^{ + \infty } {\frac{{2z}}<br />{{n^2  - z^2 }}}  = \frac{1}<br />{z} - \sum\limits_{n = 1}^{ + \infty } {\left( {\frac{1}<br />{{n - z}} - \frac{1}<br />{{n + z}}} \right)}  = \frac{1}<br />{z} + \sum\limits_{n = 1}^{ + \infty } {\left( {\frac{1}<br />{{z + n}} + \frac{1}<br />{{z - n}}} \right)} <br />$$

Entonces
TEX: $$<br />\sum\limits_{n =  - \infty }^{ + \infty } {\frac{1}<br />{{n + z}}}  = \frac{\pi }<br />{{\tan \pi z}}<br />$$

por otro lado expandiendo la suma
TEX: $$<br />\sum\limits_{n =  - \infty }^{ + \infty } {\frac{{\left( { - 1} \right)^n }}<br />{{n + \frac{1}<br />{2} - \frac{a}<br />{2}}}}  = ... + \frac{{\left( { - 1} \right)^{ - 2} }}<br />{{ - 2 + \frac{1}<br />{2} - \frac{a}<br />{2}}} + \frac{{\left( { - 1} \right)^{ - 1} }}<br />{{ - 1 + \frac{1}<br />{2} - \frac{a}<br />{2}}} + \frac{{\left( { - 1} \right)^0 }}<br />{{0 + \frac{1}<br />{2} - \frac{a}<br />{2}}} + \frac{{\left( { - 1} \right)^1 }}<br />{{1 + \frac{1}<br />{2} - \frac{a}<br />{2}}} + \frac{{\left( { - 1} \right)^2 }}<br />{{2 + \frac{1}<br />{2} - \frac{a}<br />{2}}} + ...<br />$$
notese que

TEX: $$<br /> = \left( {... + \frac{1}<br />{{ - 6 + \frac{1}<br />{2} - \frac{a}<br />{2}}} + \frac{1}<br />{{ - 4 + \frac{1}<br />{2} - \frac{a}<br />{2}}} + \frac{1}<br />{{ - 2 + \frac{1}<br />{2} - \frac{a}<br />{2}}} + \frac{1}<br />{{0 + \frac{1}<br />{2} - \frac{a}<br />{2}}} + \frac{1}<br />{{2 + \frac{1}<br />{2} - \frac{a}<br />{2}}} + ...} \right)<br />$$

TEX: $$<br /> + \left( {... + \frac{{ - 1}}<br />{{ - 5 + \frac{1}<br />{2} - \frac{a}<br />{2}}} + \frac{{ - 1}}<br />{{ - 3 + \frac{1}<br />{2} - \frac{a}<br />{2}}} + \frac{{ - 1}}<br />{{ - 1 + \frac{1}<br />{2} - \frac{a}<br />{2}}} + \frac{{ - 1}}<br />{{1 + \frac{1}<br />{2} - \frac{a}<br />{2}}} + \frac{{ - 1}}<br />{{3 + \frac{1}<br />{2} - \frac{a}<br />{2}}} + ...} \right)<br />$$
es decir;

TEX: $$<br /> = \sum\limits_{n =  - \infty }^{ + \infty } {\frac{1}<br />{{2n + \frac{1}<br />{2} - \frac{a}<br />{2}}}}  - \sum\limits_{n =  - \infty }^{ + \infty } {\frac{1}<br />{{2n + 1 + \frac{1}<br />{2} - \frac{a}<br />{2}}}} <br />$$

TEX: $$<br />\int\limits_0^{ + \infty } {\frac{{\cosh ax}}<br />{{\cosh x}}dx}  = \frac{1}<br />{2}\sum\limits_{n =  - \infty }^{ + \infty } {\frac{{\left( { - 1} \right)^n }}<br />{{n + \frac{1}<br />{2} - \frac{a}<br />{2}}}}  = \frac{1}<br />{2}\left( {\sum\limits_{n =  - \infty }^{ + \infty } {\frac{1}<br />{{2n + \frac{1}<br />{2} - \frac{a}<br />{2}}}}  - \sum\limits_{n =  - \infty }^{ + \infty } {\frac{1}<br />{{2n + 1 + \frac{1}<br />{2} - \frac{a}<br />{2}}}} } \right)<br />$$

TEX: $$<br /> = \frac{1}<br />{2}\left( {\frac{1}<br />{2}\sum\limits_{n =  - \infty }^{ + \infty } {\frac{1}<br />{{n + \frac{1}<br />{4} - \frac{a}<br />{4}}}}  - \frac{1}<br />{2}\sum\limits_{n =  - \infty }^{ + \infty } {\frac{1}<br />{{n + \frac{1}<br />{2} + \frac{1}<br />{4} - \frac{a}<br />{4}}}} } \right) = \frac{1}<br />{2}\left( {\frac{1}<br />{2}\frac{\pi }<br />{{\tan \pi \left( {\frac{1}<br />{4} - \frac{a}<br />{4}} \right)}} - \frac{1}<br />{2}\frac{\pi }<br />{{\tan \pi \left( {\frac{1}<br />{2} + \frac{1}<br />{4} - \frac{a}<br />{4}} \right)}}} \right)<br />$$

TEX: $$<br /> = \frac{\pi }<br />{4}\left( {\frac{1}<br />{{\tan \left( {\frac{\pi }<br />{4} - \frac{{\pi a}}<br />{4}} \right)}} - \frac{1}<br />{{\tan \left( {\frac{\pi }<br />{2} + \frac{\pi }<br />{4} - \frac{{\pi a}}<br />{4}} \right)}}} \right) = \frac{\pi }<br />{4}\left( {\frac{1}<br />{{\tan \left( {\frac{\pi }<br />{4} - \frac{{\pi a}}<br />{4}} \right)}} + \tan \left( {\frac{\pi }<br />{4} - \frac{{\pi a}}<br />{4}} \right)} \right)<br />$$

TEX: $$<br /> = \frac{\pi }<br />{4}\frac{{1 + \tan ^2 \left( {\frac{\pi }<br />{4} - \frac{{\pi a}}<br />{4}} \right)}}<br />{{\tan \left( {\frac{\pi }<br />{4} - \frac{{\pi a}}<br />{4}} \right)}} = \frac{\pi }<br />{4}\frac{{\sec ^2 \left( {\frac{\pi }<br />{4} - \frac{{\pi a}}<br />{4}} \right)}}<br />{{\tan \left( {\frac{\pi }<br />{4} - \frac{{\pi a}}<br />{4}} \right)}} = \frac{\pi }<br />{4}\frac{1}<br />{{\sin \left( {\frac{\pi }<br />{4} - \frac{{\pi a}}<br />{4}} \right)\cos \left( {\frac{\pi }<br />{4} - \frac{{\pi a}}<br />{4}} \right)}} = \frac{\pi }<br />{2}\frac{1}<br />{{\sin \left( {\frac{\pi }<br />{2} - \frac{{\pi a}}<br />{2}} \right)}}<br />$$

TEX: $$<br /> = \frac{\pi }<br />{2}\frac{1}<br />{{\cos \left( { - \frac{{\pi a}}<br />{2}} \right)}} = \frac{\pi }<br />{2}\frac{1}<br />{{\cos \frac{{\pi a}}<br />{2}}} = \frac{\pi }<br />{2}\sec \frac{{\pi a}}<br />{2}<br />$$

Saludos !

Mensaje modificado por master_c el Jan 10 2013, 12:31 PM
Go to the top of the page
 
+Quote Post
master_c
mensaje Jan 10 2013, 04:17 PM
Publicado: #9





Invitado






para el 7)
TEX: $$<br />K\left( n \right) = \int\limits_0^{ + \infty } {\frac{{\cosh nx}}<br />{{\cosh x}}dx}  = \frac{1}<br />{2}\int\limits_{ - \infty }^{ + \infty } {\frac{{e^{nx}  + e^{ - nx} }}<br />{{e^x  + e^{ - x} }}dx}  = \frac{1}<br />{2}\int\limits_0^{ + \infty } {\frac{{y^n  + y^{ - n} }}<br />{{1 + y^2 }}dy} <br />$$

TEX: $$<br /> = \frac{1}<br />{4}\left( {2\int\limits_0^{\frac{\pi }<br />{2}} {\cos ^{2\left( {\frac{n}<br />{2} + \frac{1}<br />{2}} \right) - 1} \theta \sin ^{2\left( { - \frac{n}<br />{2} + \frac{1}<br />{2}} \right) - 1} \theta d\theta }  + 2\int\limits_0^{\frac{\pi }<br />{2}} {\cos ^{2\left( { - \frac{n}<br />{2} + \frac{1}<br />{2}} \right) - 1} \theta \sin ^{2\left( {\frac{n}<br />{2} + \frac{1}<br />{2}} \right) - 1} \theta d\theta } } \right)<br />$$
invocando a beta

TEX: $$<br /> = \frac{1}<br />{4}\left( {\beta \left( {\frac{n}<br />{2} + \frac{1}<br />{2}, - \frac{n}<br />{2} + \frac{1}<br />{2}} \right) + \beta \left( { - \frac{n}<br />{2} + \frac{1}<br />{2},\frac{n}<br />{2} + \frac{1}<br />{2}} \right)} \right)<br />$$
haciendo el cambio a gamma

TEX: $$<br /> = \frac{1}<br />{4}\left( {\frac{{\Gamma \left( {\frac{n}<br />{2} + \frac{1}<br />{2}} \right)\Gamma \left( { - \frac{n}<br />{2} + \frac{1}<br />{2}} \right)}}<br />{{\Gamma \left( {\frac{n}<br />{2} + \frac{1}<br />{2} +  - \frac{n}<br />{2} + \frac{1}<br />{2}} \right)}} + \frac{{\Gamma \left( { - \frac{n}<br />{2} + \frac{1}<br />{2}} \right)\Gamma \left( {\frac{n}<br />{2} + \frac{1}<br />{2}} \right)}}<br />{{\Gamma \left( { - \frac{n}<br />{2} + \frac{1}<br />{2} + \frac{n}<br />{2} + \frac{1}<br />{2}} \right)}}} \right)<br />$$

TEX: $$<br /> = \frac{1}<br />{2}\Gamma \left( {\frac{n}<br />{2} + \frac{1}<br />{2}} \right)\Gamma \left( {1 - \left( {\frac{n}<br />{2} + \frac{1}<br />{2}} \right)} \right)<br />$$

TEX: $$<br /> = \frac{1}<br />{2}\frac{\pi }<br />{{\sin \pi \left( {\frac{1}<br />{2} + \frac{n}<br />{2}} \right)}}<br />$$

TEX: $$<br /> = \frac{\pi }<br />{{2\cos \left( {\frac{{n\pi }}<br />{2}} \right)}}<br />$$
Go to the top of the page
 
+Quote Post
master_c
mensaje Jan 10 2013, 05:01 PM
Publicado: #10





Invitado






para el 7 otra solucion
como a pertenece a (-1,1) manipularemos a nuestro favor dicho dato
TEX: $$<br />\int\limits_0^{ + \infty } {\frac{{\cosh ax}}<br />{{\cosh x}}dx}  = \frac{1}<br />{2}\int\limits_{ - \infty }^{ + \infty } {\frac{{e^{ax}  + e^{ - ax} }}<br />{{e^x  + e^{ - x} }}dx}  = \frac{1}<br />{2}\int\limits_0^{ + \infty } {\frac{{y^a  + y^{ - a} }}<br />{{y^2  + 1}}dy}  = \frac{1}<br />{2}\int\limits_0^{ + \infty } {\frac{y}<br />{{y^2  + 1}}\left( {y^{ - \left( {1 - a} \right)}  + y^{ - \left( {1 + a} \right)} } \right)dy} <br />$$
TEX: $$<br /> = \frac{1}<br />{2}\int\limits_0^{ + \infty } {\int\limits_0^{ + \infty } {e^{ - u} \sin \left( {yu} \right)} \left( {y^{ - \left( {1 - a} \right)}  + y^{ - \left( {1 + a} \right)} } \right)dudy} <br />$$
(se uso TEX: $$<br />\int {e^{bx} \sin axdx}  = \frac{{e^{bx} }}<br />{{a^2  + b^2 }}\left( {b\sin ax - a\cos ax} \right) + K<br />$$ integrando por partes es facil probar)

TEX: $$<br />\int\limits_0^{ + \infty } {e^{ - au} \sin bu} du = \frac{b}<br />{{b^2  + a^2 }}<br />$$
entonces

TEX: $$<br /> = \frac{1}<br />{2}\int\limits_0^{ + \infty } {e^{ - u} \left( {\int\limits_0^{ + \infty } {\left( {y^{ - \left( {1 - a} \right)}  + y^{ - \left( {1 + a} \right)} } \right)\sin \left( {yu} \right)dy} } \right)du} <br />$$

TEX: $$<br /> = \frac{1}<br />{2}\int\limits_0^{ + \infty } {e^{ - u} \left( {\int\limits_0^{ + \infty } {y^{ - \left( {1 - a} \right)} \sin \left( {yu} \right)dy}  + \int\limits_0^{ + \infty } {y^{ - \left( {1 + a} \right)} \sin \left( {yu} \right)dy} } \right)du} <br />$$

basandome en un viejo post
http://www.fmat.cl/index.php?showtopic=66445

TEX: $$<br />\int\limits_0^{ + \infty } {y^{a - 1} \sin \left( {yu} \right)dy}  =  - \int\limits_0^{ + \infty } {y^{a - 1} \sin \left( { - yu} \right)dy}  =  - \Im \int\limits_0^{ + \infty } {y^{a - 1} e^{ - iyu} dy} <br />$$

TEX: $$<br /> = \Im \left( {\frac{i}<br />{u}\int\limits_0^{ + \infty } {\left( {\frac{k}<br />{{ui}}} \right)^{a - 1} e^{ - k} dk} } \right) = \Im \left( {\frac{i}<br />{u}\left( {\frac{1}<br />{{ui}}} \right)^{a - 1} \int\limits_0^{ + \infty } {k^{a - 1} e^{ - k} dk} } \right) = \Im \left( {i^{2 - a} \frac{{\Gamma \left( a \right)}}<br />{{u^a }}} \right) =  - \frac{1}<br />{{u^a }}\Im \left( {i^{ - a} \Gamma \left( a \right)} \right)<br />$$

TEX: $$<br /> =  - \frac{1}<br />{{u^a }}\Im \left( {\left( {\cos \frac{{a\pi }}<br />{2} - i\sin \frac{{a\pi }}<br />{2}} \right)\Gamma \left( a \right)} \right)<br />$$

TEX: $$<br /> = \frac{1}<br />{{u^a }}\Gamma \left( a \right)\sin \frac{{a\pi }}<br />{2}<br />$$
idem para la otra integral

TEX: $$<br />\int\limits_0^{ + \infty } {y^{ - \left( {1 + a} \right)} \sin \left( {yu} \right)dy}  =  - \int\limits_0^{ + \infty } {y^{ - \left( {1 + a} \right)} \sin \left( { - yu} \right)dy}  =  - \Im \int\limits_0^{ + \infty } {y^{ - \left( {a + 1} \right)} e^{ - iyu} dy} <br />$$

TEX: $$<br /> = \Im \left( {\frac{i}<br />{u}\int\limits_0^{ + \infty } {\left( {\frac{k}<br />{{ui}}} \right)^{ - \left( {a + 1} \right)} e^{ - k} dk} } \right) = \Im \left( {\frac{i}<br />{u}\left( {\frac{1}<br />{{ui}}} \right)^{ - \left( {a + 1} \right)} \int\limits_0^{ + \infty } {k^{ - \left( {a + 1} \right)} e^{ - k} dk} } \right) =  - \Im \left( {i^a u^a \Gamma \left( { - a} \right)} \right)<br />$$

TEX: $$<br /> =  - u^a \Im \left( {\left( {\cos \frac{{a\pi }}<br />{2} + i\sin \frac{{a\pi }}<br />{2}} \right)\Gamma \left( { - a} \right)} \right)<br />$$

TEX: $$<br /> =  - u^a \sin \frac{{a\pi }}<br />{2}\Gamma \left( { - a} \right)<br />$$
entonces, se tiene

TEX: $$<br /> = \frac{1}<br />{2}\int\limits_0^{ + \infty } {e^{ - u} \left( {\frac{1}<br />{{u^a }}\Gamma \left( a \right)\sin \frac{{a\pi }}<br />{2} - u^a \sin \frac{{a\pi }}<br />{2}\Gamma \left( { - a} \right)} \right)du} <br />$$

TEX: $$<br /> = \frac{1}<br />{2}\Gamma \left( a \right)\sin \frac{{a\pi }}<br />{2}\int\limits_0^{ + \infty } {u^{ - a} e^{ - u} du}  - \frac{1}<br />{2}\Gamma \left( { - a} \right)\sin \frac{{a\pi }}<br />{2}\int\limits_0^{ + \infty } {e^{ - u} u^a du} <br />$$

TEX: $$<br /> = \frac{1}<br />{2}\Gamma \left( a \right)\sin \frac{{a\pi }}<br />{2}\int\limits_0^{ + \infty } {u^{1 - a - 1} e^{ - u} du}  - \frac{1}<br />{2}\Gamma \left( { - a} \right)\sin \frac{{a\pi }}<br />{2}\int\limits_0^{ + \infty } {u^{1 + a - 1} e^{ - u} du} <br />$$

TEX: $$<br /> = \frac{1}<br />{2}\Gamma \left( {1 - a} \right)\Gamma \left( a \right)\sin \frac{{a\pi }}<br />{2} - \frac{1}<br />{2}\Gamma \left( {1 + a} \right)\Gamma \left( {1 - \left( {a + 1} \right)} \right)\sin \frac{{a\pi }}<br />{2}<br />$$

TEX: $$<br /> = \frac{1}<br />{2}\left( {\frac{\pi }<br />{{\sin a\pi }} - \frac{\pi }<br />{{\sin \left( {a + 1} \right)\pi }}} \right)\sin \frac{{a\pi }}<br />{2}<br />$$

TEX: $$<br /> = \frac{1}<br />{2}\left( {\frac{\pi }<br />{{\sin a\pi }} - \frac{\pi }<br />{{ - \sin a\pi }}} \right)\sin \frac{{a\pi }}<br />{2}<br />$$

TEX: $$<br /> = \frac{1}<br />{2}\frac{{2\pi }}<br />{{\sin a\pi }}\sin \frac{{a\pi }}<br />{2}<br />$$

TEX: $$<br /> = \frac{1}<br />{2}\frac{\pi }<br />{{\sin \frac{{a\pi }}<br />{2}\cos \frac{{a\pi }}<br />{2}}}\sin \frac{{a\pi }}<br />{2}<br />$$

TEX: $$<br /> = \frac{\pi }<br />{{2\cos \frac{{a\pi }}<br />{2}}}<br />$$
Go to the top of the page
 
+Quote Post

Reply to this topicStart new topic
1 usuario(s) está(n) leyendo esta discusión (1 invitado(s) y 0 usuario(s) anónimo(s))
0 miembro(s):

 

Versión Lo-Fi Fecha y Hora actual: 23rd November 2024 - 05:51 PM