Identificarse Registrarse

Psu
Enseñanza Básica
Enseñanza Media
Universidad
Olimpiadas
Comunidad



 
Reply to this topicStart new topic
> Prueba 2º nivel Stgo, fundamente ^^
Hollow
mensaje Jul 1 2007, 12:57 AM
Publicado: #1


Principiante Matemático
Ícono de Grupo

Grupo: Usuario FMAT
Mensajes: 10
Registrado: 30-June 07
Desde: America del Sur
Miembro Nº: 7.200
Nacionalidad:
Sexo:



Segundo Nivel


(1) Supongamos el siguiente grupo en la Compa America: Argentina, Mexico, Paraguay y Chile.
Sabemos que despues de jugarse los aprtidos del grupo ( todos contra todos), cada equipo ha obtenido una victoria,
un empate y una derrota. Si Chile vencio a Argentina, ¿es posible que paraguay y Mexico hayan empatado?

Dato Aparte: solo pueden jugar 1 ves cada equipo ^^


(2) a) Decida si es posible dividir el conjunto

{ TEX: $1^2 , 2^2 , 3^2 , 4^2 , 5^2 , 6^2 , 7^2$ }



en 2 grupos A y B, sin elementos en común, de modo que la suma de los elementos de A sea igual a la suma de los elementos de B


b) ¿Es posible hacer una divicion similar con el conjunto

{ TEX: $1^2 , 2^2 , 3^2 , 4^2 , 5^2 , 6^2 , 7^2 , 8^2 , 9^2$ }?



fundamente su respuesta
Archivo(s) Adjunto(s)
Archivo Adjunto  CMAT_2.pdf ( 36.01k ) Número de descargas:  20
 
Go to the top of the page
 
+Quote Post
Hollow
mensaje Jul 1 2007, 01:22 AM
Publicado: #2


Principiante Matemático
Ícono de Grupo

Grupo: Usuario FMAT
Mensajes: 10
Registrado: 30-June 07
Desde: America del Sur
Miembro Nº: 7.200
Nacionalidad:
Sexo:



Bueno gusto con saludarlos a todos los miembros del foro, esta es la segunda ves q me registro, espero no perder la clave denuevo, ya que la otra cuenta no me duro nisiquiera 2 dias xDD

Voy al cmat y estoy en las pruebas de 2º nivel


Y el problema 2 me dejo medio intrigrado en como resolverlo y quiero plantear como lo desarrolle y me gustaria saber una manera mas bonita de hacerlo siesque ahi ^^

a) Tenemos el conjunto

{ TEX: $1^2 , 2^2 , 3^2 , 4^2 , 5^2 , 6^2 , 7^2$ }

Como eran cuadrados calculables los desarrolle quedando

{ 1 , 4 , 9 , 16 , 25 , 36 , 49}

Como se tenian que crear 2 grupos de igual suma, sume todo los cuadrados y los dividi en 2 para saver si se podian tener 2 grupos iguales y para eso nos ayuda el divisor 2

quedando: 1 + 4 + 9 + 16 + 25 + 36 + 49= 140/2= 70

como me dio un Nº entero natural conclui que si se pueden crear 2 grupos que sumen lo mismo, pero esa suma tenia que ser 70 para que sumen asi el total.
quedando en mi grupo A: { TEX: $1^2 , 2^2 , 4^2 , 7^2$ }= suma 70 los resultados
grupo B: { TEX: $3^2 , 5^2 , 6^2$ }= suma 70 los resultados





b) Para este problema me ayude con el problema a) ya que solo se le agregaba al conjunto el 8 y el 9 al cuadrado lo que hice en resumidas cuenta fue sumarles el 64 + 81 ( cuadrado de 8 y 9) a la suma del conjunto del 1 al 7 al cuadrado que era 140 por lo que me quedaba

140 + 64 + 91= 295

y al 295 dividirlo en 2 para ver si se pueden hacer 2 grupos iguales, pero como es impar no cumple la funcion de quedar como entero
por lo que en este problema decidi que NO se podian hacer 2 grupos iguales




Bueno haci hise el problema Nº2 y me gustaria saber si habia otro metodo mas interesante que el mio ^^
como soy principiante no conosco muchos =P

P.D: Pido disculpas de ante mano si ahi partes mal redactadas o que no se entienden, ya que mi gran problema es la ortografia y la manera de explicar =P

Saludos
Go to the top of the page
 
+Quote Post
Hollow
mensaje Jul 1 2007, 12:21 PM
Publicado: #3


Principiante Matemático
Ícono de Grupo

Grupo: Usuario FMAT
Mensajes: 10
Registrado: 30-June 07
Desde: America del Sur
Miembro Nº: 7.200
Nacionalidad:
Sexo:



condoro.png =P me ekivok en sumar 140+ 64 + 91 ,,, el 91 no es el cuadrado de 9 =P
es 140+ 64+ 81= 285 ^^ aporte.gif
Go to the top of the page
 
+Quote Post
Killua
mensaje Jul 1 2007, 01:39 PM
Publicado: #4


Staff Fmat
Ícono de Grupo

Grupo: Moderador
Mensajes: 1.185
Registrado: 29-October 05
Desde: Santiago, Chile
Miembro Nº: 352
Nacionalidad:
Colegio/Liceo: Instituto Nacional
Universidad: Universidad Catolica de Chile-Facultad de Ingenieria
Sexo:



Creo que esta fecha debió recibir el nombre de "Corazón de abuelita" (en Santiago)

Vemos que en el problema 1, Paraguay y México no pudieron haber empatado, ya que como Chile le ganó a Argentina (cosa imposible en la vida real death.gif ), entonces empató o con Paraguay o con México (ya que empata una vez cada equipo), luego, al enfrentarse Paraguay y México no pueden empatar, ya que uno de ellos ya empató con Chile, y no pueden empatar dos veces.

El problema 2a) era inspeccionar, y el 2b) paridad whistling.gif

Saludos.

PD: bienvenido al foro Hollow kool2.gif


--------------------
"He looks rather ill, but he looks all over the genius he was" (G. H. Hardy)
"A mathematician is a device for turning coffee into theorems" (Paul Erdös)
Go to the top of the page
 
+Quote Post
fs_tol
mensaje Aug 19 2007, 05:45 PM
Publicado: #5


Dios Matemático Supremo
Ícono de Grupo

Grupo: Usuario FMAT
Mensajes: 670
Registrado: 30-January 06
Desde: Ñuñoa, Santiago
Miembro Nº: 524
Nacionalidad:
Universidad: Universidad de Chile-FCFM
Sexo:



Ambas soluciones son correctas, a pesar de un error de cálculo por ahí, la idea del P2 b) era, como dijo Killua, analizar la paridad más que saber sumar tongue.gif
Saludos


--------------------


TEX: $CARITA$
Go to the top of the page
 
+Quote Post

Reply to this topicStart new topic
1 usuario(s) está(n) leyendo esta discusión (1 invitado(s) y 0 usuario(s) anónimo(s))
0 miembro(s):

 

Versión Lo-Fi Fecha y Hora actual: 23rd November 2024 - 07:40 PM